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1 Introduction

The phenomenon of synchronization and its effects have been studied extensively as it has
been observed for centuries in biological, chemical, physical and social systems. The various
examples of oscillators found in nature include the rhythmical beating of our hearts, neu-
ronal synchrony in the visual cortex, the synchronous flashing of fireflies, arrays of lasers,
microwave oscillators and many more. One specific scenario in which synchronization effects
have been studied to a great extent is that of phase or limit-cycle oscillators which consists
of an ensemble of nonlinear oscillators moving in a globally attracting limit cycle of constant
amplitude. Weak coupling of these oscillators gives rise to complex and important mathe-
matical questions. Winfree was able to formulate the problem in terms of a huge population
of interacting limit-cycle oscillators and undertake a phase reduction approach to the prob-
lem. He was also able to understand synchronization as a threshold process, meaning that
with strong enough coupling a family of non-trivial synchronized equilibria exists. In this
approach one can exploit the separation of timescales: a fast timescale for oscillators which
relax to their limit cycles and a long timescale with weak coupling and slight frequency
differences between the oscillators. It wasn’t until 1975 that Kuramoto started working on
collective synchronization. He used the perturbative method of averaging to show that for a
large system of weakly coupled, nearly identical limit-cycle oscillators, the form of the phase
equations is the following:

θ̇ = ωi +
1

N

N∑
i=1

Γijθj − θi) i = 1...N (1) (1)

where the i-th oscillator with natural frequency ωi adjusts its phase velocity according to in-
put from other oscillators through the pair-wise phase interaction functions Γij. The natural
frequencies ωi are distributed according to a specified probability density g(ω) usually taken
to be a symmetric, unimodal distribution such as a Lorentzian or a Gaussian with mean ω0.
The interaction functions Γij can be thought as phase response of oscillator j to input from
i.
This reduction to the phase model represents a tremendous simplification, in this formula-
tion the topology (i.e ring, cubic lattice, random graph) and the form of the phase response
curve remain unspecified which makes a general analysis of the model far too difficult. The
classic Kuramoto model specifies global (all-to-all) coupling mediated by a purely sinusoidal
interaction function:

Γij(θj − θi) =
K

N
sin(θj − θi) θ̇ = ωi +

K

N

N∑
j=1

sin(θj − θi) i = 1...N (2)

with K being the coupling strength and 1
N

ensuring that the model is well behaved when
N →∞.

The sinusoidal interaction function is a first-order approximation to the more general form
of (1) but still permits a variety of highly non-trivial solutions. A notable feature of this
choice is that the interaction function vanishes when the phases are identical (oscillators
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are in phase or anti-phase). In the case of near antiphase, the phases are pushed apart,
meaning that there exists a single attracting synchronous and a single unstable antiphase
constellation for pairs of oscillators. This model is the canonical form for synchronization.
In the Kuramoto model, the impact of increasing K is specifically the increase the phase
synchrony amongst the oscillators. For weak K the oscillators disperse, whereas for strong K
they remain relatively synchronous. In the case of intermediate K, it can be observed that
a large cluster of synchronous oscillators appear. As K increases, the interaction functions
overcome the dispersion of natural frequencies ωi resulting in a transition from incoherence,
to partial and then full synchronization. In order to quantify the degree of synchrony, the
formula below was employed in order to calculate the centroid vector of this phase distribu-
tion:

reiψ =
1

N

N∑
i=1

eiθj

where ψ is the mean phase of the set of θj and the scalar r represents the phase divergence or
uniformity. Phase coherence r is identified as the order parameter of the system: it vanishes
when the individual oscillations add incoherently and no macroscopic rhythm is produced
and approaches one when the oscillators move in a tight clump and their phases become
aligned.

As Kuramoto observed, we can rewrite θ̇ = ωi + K
N

∑N
j=1 sin(θj − θi) in terms of the or-

der parameter by multiplying both sides by e−iθi

rei(ψ−θi) =
1

N

N∑
i=1

ei(θj−θi)

Equating imaginary parts yields:

r(t) sin(ψ(t)− θi(t)) = 1
N

∑N
j=1 sin(θj(t)− θi(t)), i = 1, ..., N

The system now becomes:

θ̇i = ωi + κr sin(ψ − θi) i = 1, ..., N

Based on this formulation, each oscillator is independent and uncoupled from all the others
and depend of the mean field alone through which they still interact. For a greater phase
coherence (larger r) there’s an increase in the effective adjustment of each oscillator’s phase
toward the mean field which thus leads to further increases in phase coherence. Kuramoto
exploited this representation to derive an analytic value for Kc.
We can assume g(ω) to be a Gaussian or some other density with infinite tails and observe
how the coupling K varies. For all K less than a certain threshold Kc, the oscillators act
as if they were uncoupled, but when K exceeds Kc, this incoherent state becomes unstable,
r(t) grows exponentially and a small cluster of oscillators that are mutually synchronized
appears, in this way generating a collective oscillation. The population of oscillators splits
into two groups: the oscillators near the center of the frequency distribution lock together
at the mean frequency while those in the tails run near their natural frequencies and drift
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relative to the synchronized cluster. This mixed state is often called partially synchronized.
With further increases in K, more and more oscillators are recruited into the synchronized
cluster.

2 Stochasticity

All the dynamics discussed thus far incorporate stochasticity solely through the randomness
of the oscillators’ frequencies ωi. Now we include stochastic forces by explicitly introducing
white noise into the dynamics. In order to do so, we return to the finite N ensemble of phase
oscillators and write the so-called Langevin equation of the stochastic Kuramoto model:

θ̇ = ωi + ξj(t) +
K

N

N∑
j=1

sin(θj − θi) i = 1, ..., N (3)

where the ξj(t) are spatially independent and temporally uncorrelated random fluctuations
with vanishing means and variance σ2. Once again, by recasting the model by using the
mean field formulation, in the presence of stochastic forces the model now becomes:

θ̇i = ωi + ξj(t) + κr sin(ψ − θi) i = 1, ..., N (4)

We now introduce the probability density function for the oscillators at time t with nat-
ural frequency ω, ρ(t, θ, ω). Let ρ(θ, t, ω)dθ denote the fraction of these oscillators that lie
between θ and θ + dθ at time t. Here, ρ is nonnegative, 2π-periodic in θ and normalized,∫ 2π

0
ρ(t, θ, ω)dθ = 1

The parameter order is now introduced by:

r(t)eiψ(t) =
∫
R

∫ 2π

0
eiθ̃ρ(t, θ̃, ω)g(ω)dθ̃dω and r(t)(sinψ(t)−θ) =

∫
R

∫ 2π

0
(sin(θ̃−θ)ρ(t, θ̃, ω)dθ̃dω

The evolution of ρ is governed by the continuity equation:

∂ρ
∂t

= − ∂
∂ρ

(ρU [ρ] which expresses conservation of oscillators of frequency ω. Here the

velocity U [ρ](t, θ, ω] is interpreted in an Eulerian sense as the instentaneous velocity of an
oscillator at position θ, given that it has natural frequency ω.

U [ρ](t, θ, ω) = ω + κr(t) sin(ψ(t)− θ)

= ω − κ
∫
R

(sin ∗ρ)(t, θ, ω)g(ω)dω

= ω − κ
∫
R

∫ 2π

0

sin(θ − θ̃)ρ(t, θ̃, ω)g(ω)dθ̃dω.
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The white nose variables ξj(t) introduced above are independent processes that satisfy:

〈ξj(t)〉 = 0, < ξj(s)ξj(t) >= 2Dδijδ(s− t)

Here D ≥ 0 is the noise strength and the angular brackets denote an average over realiza-
tions of the noise. As argued by Sakaguchi, since we have a system of Langevin equations
with mean-field coupling, as N →∞ the density ρ(θ, t, ω) should satisfy the Fokker-Planck
equation

∂ρ

∂t
= D

∂2ρ

∂θ2
− ∂

∂θ
(ρU [ρ])

Thus, the Sakaguchi’s Fokker Planck equation reduces to the continuum limit of the Ku-
ramoto model when D = 0.

3 Two-mode PIF

However, while the Kuramoto model provides a simple way of modeling coupled oscillators,
the simple sinusoidal interaction function that is employed in it may not be a typical func-
tional form one could find in wide ranges of experimental situations . An example would be
the Hodgkin-Huxley model of neurons representing real spiking neurons of the brain which
are coupled electrically. In this case a simple sinusoidal function is not sufficient, but at least
three Fourier modes are necessary. When considering the two-mode PIF of the form:

Γ(θ) = sin(θ) + 2ε sin 2(θ − α), (5)

the parameter ε modifies the contribution of the second order term and α de-phases the
relative postion of the two modes.
The first thing to note is that the two modes have opposite sign and the Kuramoto model
with a one-mode PIF features one stabe and one unstable fixed point. In the two-mode
PIF the two modes intersect twice and therefore the PIF vanishes at four points along a
full cycle: two stable (attracting) nodes separate two unstable saddles. These extra fixed
points therefore facilitate the existence of distinct clusters of phase locked oscillators even
if the coupling is otherwise global, a phenomenon that is not possible with the first Fourier
mode alone. This dynamic instability in the PIF enables a rich variety of more complex
dynamics, most notably the emergence of heteroclinic cycles which connect a a pair of two-
cluster states. The two cluster states appear to be unstable, however they are sensitive to
noise. The injection of a stochastic influence into the states stabilizes the frequency of the
slow heteroclinic cycling which then scales with log of the variance noise. In these systems,
two distinct time scales arise naturally: the fast dynamics of the oscillators and the relatively
slow rotation through the heteroclinic cycle. The two cluster states appear unstable, they are
sensitive to noise hence the slow periodic oscillation between them: a limit cycle featuring
yet another timescale for the system.

Page 4



We can define:

U [ρ](t, θ) = −κ
∫ 2π

0

Γ(θ − θ′)ρ(t, θ′)dθ′ = −κ(Γ ∗ ρ)(t, θ).

We introduce now the interaction potential W by ∂θW = ρ, and V [ρ] = κ(W ∗ρ), we have
−∂θV = U and we can write the equation as follows:

∂ρ

∂t
=
∂2ρ

∂θ2
+

∂

∂θ
(ρ
∂

∂θ
V [ρ]),

or
∂

∂t
=

∂

∂θ

(
e−V [ρ] ∂

∂θ
(ρeV [ρ])

)
from which we get the equation for the steady states as follows:

ρ = Z−1e−W∗ρ, Z =

∫ 2π

0

e−W∗ρdθ,

When considering the two mode PIF of the form :

Γ(θ) = sin θ + 2ε sin(θ − α)

it is clear that:
W (θ) = −(cos θ + ε cos(θ − α)

therefore:

V [ρ](θ) = κ(W ∗ ρ)(θ)

= −κ[〈cos θ〉ρ cos θ + 〈sin θ〉ρ sin θ]

= −κε[〈cos 2θ〉ρ cos 2(θ − α) + 〈sin 2θ〉ρ sin 2(θ − α)]
(6)

Futhermore, we can introduce the following:

r exp(θ0i) = κ 〈exp(θi)〉ρ (7)

s exp(2τ0i) = κε 〈exp(2θi)〉ρ (8)

It follows that:

r = κ 〈cos(θ − θ0)〉ρ (9)

s = κε 〈cos 2(θ − τ0)〉ρ (10)

0 = 〈sin 2(θ − θ0)〉ρ (11)

0 = 〈sin 2(θ − τ0)〉ρ (12)
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If we convert into polar coordinates we get:

r1 = r cos θ0, r2 = r sin θ0s1 = s cos 2τ0, s2 = s sin τ0 (13)

For
φ = θ − θ0, β = θ0 − τ0, γ = α− β

we get the following:

V [ρ](θ) = −[r1 cos θ + r2 sin θ + s1 cos(θ − α) + s2 sin 2(θ − α)

= −[r cos(θ − θ0) + s cos 2(θ − τ0 − α)

= −[r cosφ+ s cos 2(φ− γ)]
(14)

Now, the steady state equation becomes:

ρ(θ) = Z−1 exp(r cosφ+ s cos 2(φ− γ)), Z =

∫ 2π

0

exp(r cosφ+ s cos 2(φ− γ))dφ. (15)

Next, we define the generalized von Mises distribution which provides a flexible model
for circular data allowing for symmetry, asymmetry, unimodality and multimodality.

Definition 3.1. f : [0, 2π)2 × R2 × [0, π]→ R

(θ|θ0, r, s, γ)→ Z−1 exp(r cos(θ − θ0) + s cos 2(θ − θ0 − γ)),

Z =

∫ 2π

0

(exp(r cosφ+ s cos 2(φ− γ))dφ.

For r,s ∈ R, γ ∈ [0, π) and n=0,1,2... the generalized modified Bessel functions can be
defined as follows:

Cn(r, s, γ) =
1

π

∫ 2π

0

cosnφµ(φ, r, s, γ)dφ (16)

Sn(r, s, γ) =
1

π

∫ 2π

0

sinnφµ(φ, r, s, γ)dφ (17)

where µ(φ, r, s, γ) = exp(r cosφ+ s cos 2(φ− γ)).

Remark 3.1. If s = 0, γ = 0 or γ = π/2, µ(φ, r, s, γ) is even in φ, so Sn(r, 0, γ) = 0 for
n ∈ N. Also, for s = 0, Cn(r, s, γ) = In(r) where

In(r) = 1
π

∫
0

2π cosnφ exp(r cosφ)dφ, is the modified Bessel function of order n.
Instead, for γ = 0 or γ = π/2; Cn(r, s, γ) = In(r, s), or Cn(r, s, γ) = In(r,−s) where

In(r1, r2) =
1

π

∫ 2π

0

cosnφ exp(r1 cosφ+ r2 cos 2φ)dφ
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is the generalization of the modified Bessel function of two dimensions.

Sn and Cn are even in r for even n and odd in r for odd n.

Also, for odd n
Sn(0, s, γ) = Cn(0, s, γ) = 0

Proposition 3.1. A probability distribution ρ satisfies the steady state equation (3) if and
only if it is a GVMD:

ρ(θ) = f(θ|θ0, r, s, γ)

where θ0 ∈ [0, 2π) and s, r, and γ are determined by:

κ
C1(r, s, γ)

C0(r, s, γ)
= r (18)

S1(r, s, κ) = 0 (19)

κε
C2(r, s, γ)

C0(r, s, γ)
= s cos 2(γ − α) (20)

κε
S2(r, s, γ)

C0(r, s, γ)
= s sin 2(γ − α) (21)

Theorem 3.1. For ε > 0 and α /∈ 0, π/2, the steady state equation allows only for incoherent
solutions ρ = 1/2π.
For ε = 0 which is the Kuramoto case, equations (7) to (10) reduce to:

I1(r)

rI0(r)
=

1

κ

For α = 0, equations (7) to (10) reduce to:

I1(r,±s)
I0(r,±s)

=
r

κ

I2(r,±s)
I0(r,±s)

=
±s
κε

Proof. For s = 0, the equation (17) requires either ε = 0 in the Kuramoto case, or I2(r) =
0, which implies r = 0 and hence ρ = 1

2π

For r = 0, solutions to (15) and (16) are trivial. Hoewever, if we compute the following:
(18)× sin 2γ − (17)× cos 2γ we get:

κε

∫ 2π

0

sin 2(φ− γ)µ(φ, 0, s, γ)dφ∫ 2π

0
µ(φ, 0, s, γ)dφ

= −s sin 2α. (22)

The LHS is zero, hence either s = 0 and ρ = 1
2π

, α = 0 or α = π
2
.

For γ = 0 or γ = π/2, µ(φ, r, s, γ) is even in φ, therefore S2(r, s, γ) = 0. Also, from (18),
sin 2α = 0, so either α = 0, or α = π/2.

Page 7



Lemma 3.1. S1(r, s, γ) =0 if and only if one of the following statements is true:
γ = 0, γ = 0, r = 0, s = 0.

Proof. From Remark 1, we know that for γ = 0, γ = 0, r = 0, s = 0, S1(r, s, γ) =0 .
Therefore, the ’only if’ part of the Lemma follows from the remark.
For the ’if’ part, S1(r, 0, γ) = S1(0, s, γ) = 0, r,s ≥ 0. Additionally,

∂rS1 =

∫ 2π

0

cosφ sinφµ(φ)dφ, (23)

∂22S1 =

∫ 2π

0

cos2 φ sinφµ(φ)dφ,

Moreover,

∂sS1 =

∫ 2π

0

sinφ cos 2(φ− γ)µ(φ)dφ

= cos 2γ

∫ 2π

0

sinφ(2 cos2 φ− 1)µ(φ)dφ+ sin 2γ

∫ 2π

2

2 sin2 φ cosφµ(φ)dφ.

= cos 2γ[2∂2rS1 − S1] + sin 2γ

∫ 2π

0

2 sin2 φ cosφµ(φ)dφ.

Futhermore, we introduce the following:

W = exp(s cos 2γ)S1,

it follows that

∂sW = ν∂2rW + g,

where ν(γ) = 2 cos 2γ, also:

g(r, s, γ) = 2 sin 2γ exp(s cos 2γ)

∫ 2π

0

sin2 φ cosφµ(φ, r, s, γ)dφ

= 2 sin 2γ exp(s cos 2γ)[C1(r, s, γ)− C3(r, s, γ)].

We know that C1 − C3 is odd in r. Also,

∂r

∫ 2π

0

sin2 cosφµ(φ)dφ =

∫ 2φ

0

sin2 φ cos2 φµ(φ)dφ>0.

Therefore, W (r, 0, γ) = W (r, s, γ) = 0, with a forcing g such that fpr r, s > 0 has the same
sign as sin 2γ and it is zero is and only if γ = 0 or γ = π/2. From the maximum principle
if follows that for r, s > 0, W (r, sγ) and also S1(r, s, γ) have the same sign as sin 2γ and are
zero if and only if γ = 0 or γ = π/2.
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We consider the cases when α ∈ 0, π/2. In the Kuramoto case, ε = 0, we are left with
the following equation:

G(r) =
1

κ
(24)

where the G(r) is defined as follows:

G(r) =
d

rdr
log I0(r) =

I1 (r)

rI0 (r)
. (25)

Proposition 3.1. (a) The function r → I ′′0
I0 (r)

is positive and strictly increasing on (0,∞);

(b) G(0) = 1
2

and G is even and strictly decreasing on (0,∞).

(c) The equation has a unique solution G−1(1/κ) > 0 for κ > 2.

Proof. (a) Since
(
I′′0
I0

)′
(0) = 0.

(b) To see that G is even, we integrate by parts and obtain the following:

G(r) = 1− I ′′0
I0

=
1

2

(
1− I2

I0

)
,

by applying part (a), we conclude that G is strictly decreasing on (0,∞).

Proposition 1. For κ ≤ (1 + ε)−1, the trivial solution (r, s) = 0 is the unique solution in
R2. It is also the unique solution in [0,∞)2 for κ ≤ 2(1 + ε)−1.

Proof. If we integrate by parts we get the following:

r = κ

∫ π

−π
(r sin2 φ+ 2s sinφ sin 2φ)µ(φ)dφ (26)

2s = κε

∫ −π
π

(r sinφ sin 2φ+ 2s sin2(2φ))µ(φ)dφ (27)

hence it follows that

r2 + 4s2/ε = κ

∫ π

−π
(r sinφ+ 2s sin(2φ))2µ(φ)dφ

≤ κ

∫ π

−π
(1 + ε)

(
r2 sin2 φ+

4s2

ε
sin2 2φ

)
µ(φ)dφ

= κ(1 + ε)

(
r2
∫ π

−π
sin2 φµ(φ)dφ+

4s2

ε

∫ π

−pi
sin2 2φµ(φ)dφ

)
=
κ(1 + ε)

2

(
r2
(

1− I2
I0

)
+

4s2

ε

(
1− I4

I0

)
dφ

)
,

(28)
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Proposition 1. If ε 6= 1, then the map F(κ, r, s) =∇(r,s) ν(κ, r, s) has two pitchfork bifurca-
tion points, (2,0) and (2/ε,0). Then, γ1 is a supercritical bifurcating branch for ε ∈ (0,1/2)
∪ (1,∞) and subcritical for ε ∈ (1/2,1). The other branch γ2 is supercritical.

Proof.

∇2
(r,s)ν(κ, 0) =

(
1− κ

2
0

0 1
ε
− κ

2

)
(29)

has eigenvectors e1 = (1,0) and e2 = (0,1) and is singular for κ = κ1 = 2 and κ = κ2
= 2/ε. We can conclude the existence of the birfucation branches γi for i = 1, 2 with an
parametrization Ii 3 t → (κi(t), ri(t), si(t)) where Ii 3 0 is an open interval. The Taylor
series representation are:

κi(t) = κi +
∞∑
j=1

k
(j)
i tj

(ri(t), si(t)) = eit+
∞∑
j=1

v
(j)
i tj

where k
(j)
i ∈ R and v

(j)
i ∈ R2. Also, k

(1)
i = 0 and

k
(2)
1 =

1/2− ε
1− ε

; k
(2)
2 =

1

2ε
.

k
(2)
i > 0 indicates a supercritical bifurcation and k

(2)
i < 0 indicates a subcritical bifurcation.
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