
STOCHASTIC POPULATION DYNAMICS

HONORS THESIS

SUBMITTED TO THE DEPARTMENT OF MATHEMATICS

OF THE COLLEGE OF STATEN ISLAND

CITY UNIVERSITY OF NEW YORK

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

BACHELOR OF SCIENCE IN MATHEMATICS

WITH HONORS

Serena Lipari DiLeonardo

May 2018



c© Copyright by Serena Lipari DiLeonardo 2018

All Rights Reserved

ii



I certify that I have read this honors thesis and that, in my opinion, it

is fully adequate in scope and quality as an honors thesis for the degree

of Bachelor of Science in Mathematics.
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2.4 Itô’s Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Numerical Methods in MATLAB 19

3.1 Solving SDEs arising in population dynamics . . . . . . . . . . . . . . 19

3.2 Comparing analytical and numerical solutions . . . . . . . . . . . . . 20

3.3 Calculating Passage Time of Brownian Motion Trajectories . . . . . . 22

4 Applications and Explorations 24

4.1 Quantifying Time to Extinction . . . . . . . . . . . . . . . . . . . . . 24

iv



4.2 Stochastic Logistic Models . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Conclusions 28

5.1 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Bibliography 29

v



List of Figures

1.1 Simple logistic model describing population dynamics . . . . . . . . . 3

1.2 Solutions to the logistic equation given different initial conditions . . 5

2.1 Five random walks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Brownian motion plotted with expected value . . . . . . . . . . . . . 12

2.3 Expected value of W 2
t compared to f(t) = t . . . . . . . . . . . . . . 13

2.4 Convergence to Brownian motion . . . . . . . . . . . . . . . . . . . . 14

2.5 Resulting histograms comparing the distribution of Brownian motion

path destinations to a normal distribution . . . . . . . . . . . . . . . 15

3.1 Resulting histograms showing first passage times of Brownian motion

trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Exponential Brownian motion simulating population dynamics . . . . 25

4.2 Stochastic Logistic model with varied degrees of added noise . . . . . 26

4.3 Stochastic Logistic model with fluctuating carrying capacity . . . . . 27

vi



Abstract

Analyzing population dynamics is vital to the existence of a sustainable planet. There

is an undeniable relationship between population dynamics and global environmen-

tal changes, and there exists a growing need for a more thorough understanding of

these connections. Population growth, composition, and distribution have important

interrelationships with land use, land cover, and global climate change.

Stochastic processes arise commonly in nature. Many stochastic processes behave, at

least for long stretches of time, like random walks with small but frequent jumps. The

arguments discussed suggest that such processes will look, at least approximately, and

on the appropriate time scale, like Brownian motion. The significance of the Logistic

model and potential stochastic effects on population dynamics are discussed and ap-

proached using simulations of random walks and Brownian motion. This project will

delve into mathematically incorporating stochasticity into population dynamics.



Chapter 1

Population Growth Models

1.1 The Logistic Model

In many cases, the rate of change of a process is not constant, but depends on the cur-

rent state of the system (e.g. the rate of population growth depending on the current

population size). Equations that relate a function to one or more of its derivatives are

called differential equations. However, many functions needed to describe a system

are unknown, yet may be found through their rate of change, i.e. their derivative(s).

The Logistic model is a model of population growth in which the growth rate of

a population is proportional to population size. Specifically, logistic growth occurs

in situations where the rate of change of a population P is proportional to the prod-

uct of the number present at any time P (t) and the difference between the number

present and a number K denoting the carrying capacity, or the maximum potential

population density. Note: K > 0.

1
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This rate of change may be expressed as the differential equation:

dP

dt
= kP (1− P

K
)

which is often known as the Verhulst model. Here, k is a positive parameter represent-

ing the base rate of population growth which decreases as the population approaches

its stable maximum size. This nonlinear equation may be solved by separation of

variables and then a method of partial fractions resulting in solutions:

P (t) =
K

1 + Ae−kt

where A = K−P0,
P0

.

1.2 Carrying Capacity

Population growth can be simply modeled without limits using the exponential func-

tion. Exponential growth occurs when a population’s growth rate increases over time

proportional to the size of the population without bounds.

A general equation expressing exponential growth is modeled by the following equa-

tion:
dP

dt
= kP

As we know, the solution to this differential equation is a function P (t) that is pro-

portional to the exponential function

P (t) = P0e
kt

where P0 = P (0).
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This equation models population growth most accurately during early stages, while

resources are seemingly unlimited. Consider a small bacteria sample in a large Petri

dish. When population dynamics continuously play out in nature, however, growth

eventually faces restrictions and constraints. Any resource vital to a species’ survival

may serve as a limiting factor, such as finite space or food supply. Competition

for resources as well as inherent limiting factors of the environment ensure that no

population can continue to grow indefinitely. The carrying capacity of a population

is defined as the maximum number of organisms which a finite environment may

support indefinitely. Contrary to the exponential growth model where the per capita

growth rate k is constant even when populations become extremely large, the per

capita growth rate k of the logistic model decreases as the population approaches

its maximum size. This behavior is illustrated by the following graph with initial

population P0 = 20, carrying capacity K = 200, and growth rate k = 0.03:

0 50 100 150 200 250 300

50

100

150

200

Time

Population Size

Figure 1.1: Simple logistic model describing population dynamics

Notice that the function asymptotically approaches the line P = 200, representing

the population’s carrying capacity K.
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1.3 Stability

Graphically, asymptotes exist at P = 0 and P = K. These two scenarios occur either

when the population is zero, or when the population has reached its carrying capacity

K. When the population size P is small, the differential equation is essentially dP
dt

=

kP since 1 − P
K
≈ 1. In the case where P > K, dP

dt
< 0 implying a decline in

population numbers, which would persist until P approaches K, thus making the

differential equation approximately equal to zero. This implies that even if we begin

with initial conditions where the population size is greater than the carrying capacity,

the population in turn will decline and approach asymptote P = K from above. For

points between the asymptotes 0 < P (0) < K, all factors of the differential equation

are positive, meaning that the function is strictly increasing. Since all points for

P > 0 will tend to the asymptotic solution P = K, this equilibrium point is known as

a sink, meaning all nearby solutions tend to this point. Even with small perturbations,

solutions will make their way back toward this value, making it a stable fixed point.

Similarly, P = 0 is classified as a source since nearby solutions tend away from zero,

making it an unstable fixed point.

The plot below depicts solutions for different initial conditions, all which tend to

the population’s carrying capacity, K, represented by the dotted blue line. Initial

population values are P0 = 0, 0.01, 2, 6, 12.

Notice that with even a minuscule perturbation, solutions tend away from P0 = 0.
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Figure 1.2: Solutions to the logistic equation given different initial conditions

1.4 Model Variations

In the real world, no two distinct species will reproduce, consume resources, and in-

teract with the living environment in exactly the same way. This simple deterministic

model may be adjusted by adding in different parameters to better fit the actual dy-

namics of a certain population. Factors that limit population growth fall into one of

two categories:

• Density dependent

• Density independent

Density dependent factors limit growth in ways that depend on population density.

This means that as a population grows, resources will become limited and the pop-

ulation will approach its ideal size, or carrying capacity. Density-dependent limiting
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factors may include light, water, nutrients, or disease. Density independent factors

are characterized as random events having no relationship with population density.

Ecologically, these events may include natural disasters such as flash floods and forest

fires, as well as human activities such as pesticides and habitat destruction. Typically,

many density-dependent and density-independent limiting factors interact to produce

the fluctuations and patterns of change that occur in population dynamics.[1]

1.5 Deterministic Models

The populations models discussed thus far are classified as deterministic models of

population growth. These models predict populations exactly for a given point in time

with predetermined parameters. As described, the logistic and exponential growth

models are example of continuous deterministic models used to predict the growth

rate of populations. Take for example the exponential model. Since the growth

rate is directly proportional to the population size, a change in dP
dt

with a change

in the population size P is consequently linear. This does not model nature very

accurately for several reasons. Species may have complex life histories and mating

patterns that go unaccounted for, as well as the potential lags in the population

growth rate caused by changes in population size. Another assumption embedded

in these models is that K, the carrying capacity, is constant over space and time.

Environments are continuously changing as time goes on, thus there is no reason to

assume the equilibrium number of organisms a given ecosystem can support would

be constant.



Chapter 2

Introduction to Stochasticity

2.1 Mathematical and Ecological Significance of

Stochasticity

Introducing stochasticity into mathematical models begins to allow their extrapola-

tion into the realm of nature. Chance events occur continuously in nature, and in

order to produce a robust mathematical model, such variations and random pertur-

bations are to be accounted for. Unlike deterministic models, stochastic population

models incorporate random variations. In deterministic models, the trajectory of the

model is wholly determined by initial conditions and its parameter values. Stochastic

models involve some inherent amount of randomness, potentially causing near iden-

tical inputs to produce drastically varied outputs. Fluctuations in populations are

often caused by demographic and environmental stochasticity, rather than by chaos

or internally generated cycles. The inherent heterogeneity of populations are likely

to cause strongly stochastic effects on the system’s dynamics in the natural world.

Stochastic differential equation models are among the basic population models that

7
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incorporate demographic and environmental stochasticity. Stochasticity is important

in population growth models, and must be incorporated in order to better understand

the nature of population fluctuations. Knowledge of both demographic and environ-

mental stochasticity is essential for explaining the temporal changes in populations

and finding approximations for probabilities of extinctions as well as expected times

to extinction, which will be explored in Chapter 4.

Demographic stochasticity results from random independent events affecting individ-

ual mortality and reproduction rates, causing random fluctuations in net population

growth rate with a more drastic impact on small populations. Environmental stochas-

ticity results from ephemeral fluctuations in mortality and reproductive rates of an

entire population, causing a population’s growth rate to fluctuate randomly in pop-

ulations of all sizes. [2]

A simple example of demographic stochasticity would be if during one year, a specific

fish species declines in numbers due to a chance production of fewer eggs among indi-

vidual members of the population. These sort of fluctuations vary at the individual

level, and most strongly impact small populations.

Environmental stochasticity would better describe the population dynamics of the

Agave plant. This species of plant, reproduces only once during its lengthy lifespan.

Average lifespans are about 25 years, though individual lifespans vary depending on

irregular rainfall. Only after receiving enough rain to allow sufficient growth will

Agaves reproduce. Eventually, an exceptionally wet season occurs and the plants will

flower, produce a large number of seeds, then die. This way, even in areas where

the amount of rainfall is scarce and unpredictable, the plants are able to gather suf-

ficient water before reproducing. Essentially, the growth and eventual reproduction

of this species is dependent on something unpredictable and erratic. The density-

independent factor rainfall is unrelated to population density, but merely an envi-

ronmental fluctuation affecting all individuals in more or less the same way. The
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density-independent factor rainfall limits birth rate, which in turn limits growth rate,

but due to its unpredictability, cannot regulate Agave populations.

Today, with the climate changing all over the world, more and more of these effects

will impact the population dynamics of nearly every species known and unknown.

Some environmental variations include local weather changes, variation in individual

health, and deforestation or forest fires that kill off large numbers of individuals.

2.2 Random Walks

In the realm of population dynamics, it is crucial to model the path taken in order to

explain past trends and accurately predict the future. Nature is inundated with ex-

ceedingly complex processes, such as growth, which may be difficult to approximate.

The natural world is also inherently subject to stochasticity.

A random walk is an example of a Markov process, where future behavior is indepen-

dent of past history. The random walk model describes the process of determining

the location of a point taking equal sized steps in arbitrary directions, up or down

for example, with equal probability. According to this scenario infamously titled the

“drunkard’s walk” problem, the distance a drunken person travels while making ran-

dom left and right turns is equal to their typical step size times the square root of

the number of steps taken. [3]
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Figure 2.1: Five random walks

Figure 2.1 was generated with the following code with n = 100:

func t i on [ t ] = myRandomWalk( n )

N = n ; % number o f s t ep s

dt = 0 . 1 ;

sdt = s q r t ( dt ) ;

x t (1 ) = 0 ;

f o r n = 1 :N

a = s ign ( randn )∗ sdt ;

x t (n+1) = x t (n) + a ;

end

p lo t ( x t )

x l a b e l ( ’ Steps ’ ) , y l a b e l ( ’ x t ’ ) , t i t l e ( ’Random Walk ’ )

end
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2.3 Brownian Motion

When you take discrete random walks with definite time steps and continually de-

crease the step size, the process tends toward continuity. Continuous Brownian mo-

tion is a random walk in minuscule steps. Particularly when observed for extended

time scales, stochastic processes behave like random walks with small but frequent

jumps. The continuous-time stochastic process Wn(t) with t > 0 is a random process

that describes the evolution of a system over time. The number of steps taken is

represented by n, and t serves as units of time. For example, after we have taken n

steps, we have

Wn(1) =
n∑
i=1

Xi

√
1

n

for random variable Xi. We describe Xi as taking on a value of either −1 or 1 with

probability p = 1
2
, producing a symmetric “walk”. The length of our time steps is

set as ∆t = 1
n
. As Brownian motion progresses, behavior at each increment of time

is independent of past behavior. Therefore, the best predictor for the future is based

on current behavior, classifying Brownian motion as a Martingale. Since the random

variables are independent, the expected value of independent increments of Wn(t) is

simply the average of values.



CHAPTER 2. INTRODUCTION TO STOCHASTICITY 12

The expected value for our symmetric set-up becomes zero, as seen below:

E[Wn(1)] = E

[ n∑
i=1

Xi

√
1

n

]
=

n∑
i=1

√
1

n
E[Xi] =

n∑
i=1

√
1

n
· 0 = 0

since the average or expectation of Xi values is 0. This can be seen in the figure

below, with 100 paths and 100 time-steps:

Figure 2.2: Brownian motion plotted with expected value
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In order to measure how far the set of random numbers is spread out from its average

or expected value, we calculate the variance:

V ar[Wn(1)] = V ar

[ n∑
i=1

Xi

√
1

n

]
=

1

n

n∑
i=1

V ar[Xi] =
1

n

n∑
i=1

1 =
1

n
· n = 1

which turns out to be dependent on the interval size, increasing proportionally with

time. For large finite n, we can approximate the distribution of Wn(1) by a normal

distribution using the Central Limit Theorem: Wn(1) ∼ N (0, 1). These calculations

extend to any t for Wn(t), thus implying Wn(t) ∼ N (0, t) since V ar[Wn(t)] = t . [4]

Figure 2.3: Expected value of W 2
t compared to f(t) = t
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The following graphs reveal the transformation from discrete random walks into con-

tinuous Brownian motion. Continuity emerges as the step size is made infinitely

small, and additionally the expected value will not change, as it is independent of n.

Depicted are four runs with 8 walks each with 10, 100, 1000, and 100,000 time-steps.

Figure 2.4: Convergence to Brownian motion
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If each individual step is random, what can be predicted about the probability dis-

tribution function of the distance of each point from the origin? The Central Limit

Theorem affirms that, with a sufficient number of independent identically distributed

random variables, the means of samples tend to a normal distribution. Regardless of

the shape of the actual distribution, this allows us to approximate our distribution

with a large enough sample size. The following histograms in Figure 2.5 compare

final distance traveled from the origin with the Gaussian distribution, represented by

the red curve. The data was produced with a code simulating Brownian motion with

an initial value of 0 for 100 steps, with 10 steps per unit of time. Runs generated

with sample size = 50, 500, 5000, and 50,000 in respective order.

Figure 2.5: Resulting histograms comparing the distribution of Brownian motion path
destinations to a normal distribution
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2.4 Itô’s Lemma

Assume the process Xt satisfies the stochastic differential equation

dXt = µtdt+ σtdWt

where µt = µ(Xt, t) and σt = σ(Xt, t).

Also note that dWt =
√
dt, or equivalently (dWt)

2 = dt. This can be roughly justified

by computing the expected value of (Wt+∆t −Wt)
2:

E[(Wt+∆t −Wt)
2] = V ar(Wt+∆t −Wt) = ∆t

This is due to the property of Brownian motion stating Wt+s −Wt has variance s

since Wt are independent and identically distributed.

In theory, we set ∆W = ±
√
∆t with P = 1

2
, but for numerical purposes, ∆W = r

√
∆t

with r ∼ N (0, 1). It follows that a change in (dWt)
2 is caused by a change in the

parameter dt, making it determinant and not random, with a magnitude of dt.

In the case of only constant deterministic growth, σ(Xt) = 0, making our equation

dXt = µ(Xt)dt

Now, if Yt = f(Xt), the equation describing Yt would be

dYt = f ′(Xt)dXt = f ′(Xt)µ(Xt)dt
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and by the chain rule,

dYt
dt

= f ′(Xt)
dXt

dt

= f ′(Xt)µ(Xt)

However, in the instance where f depends on a real variable t as well as on a stochastic

process of Brownian motion Wt, we will heuristically derive by calculating the second

order Taylor Expansion of f about Xt:

dYt = f(Xt + dXt)− f(Xt)

= f(Xt) + f ′(Xt)dXt +
1

2
f ′′(Xt)(dXt)

2 − f(Xt)

= f ′(Xt)dXt +
1

2
f ′′(Xt)[µ(Xt)dt+ σ(Xt)dWt]

2

= f ′(Xt)dXt +
1

2
f ′′(Xt)[µ

2(dt)2 + 2µσdtdWt + σ2(dWt)
2]

Since the limit of dt → 0, the terms � dt are dropped, with dX2
t given by: dt2 =

0, dtdWt = 0 and dW 2
t = dt.

Thus our equation simplifies to

dYt = f ′(Xt)dXt +
1

2
f ′′(Xt)σ

2dt (2.1)

= [f ′(Xt)µ(Xt) +
1

2
f ′′(Xt)σ

2(Xt)]dt+ f ′(Xt)σ(Xt)dWt (2.2)

The term 1
2
f ′′(Xt)σ

2dt in Equation (2.1) is known as our “Itô Term” which stems from

this generalization of the chain rule in the stochastic setting. Equation (2.2) is called

Itô’s Lemma, and the equation has been rewritten to separate the deterministic terms

from the stochastic terms. Itô’s Lemma serves as the stochastic calculus counterpart
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of the chain rule, making possible the computation to find the differential of a time-

dependent function of a stochastic process such as Brownian motion.

The reason for computing the second order Taylor Expansion is due to Brownian

motion’s infinite linear variation. However, since it has paths with finite quadratic

variation, this approximation is sufficient.

Now we apply Itô’s Lemma to find the solution to the exponential function f(x) = ex

with f(x) = f ′(x) = f ′′(x).

For the stochastic process

Xt = σtWt + µt

with constant σ and µ, we define the process Yt = f(Xt) = eXt = eσWt+µt as Expo-

nential Brownian motion. By Itô’s Lemma,

dYt = Yt(σdWt + (µ+
1

2
σ2)dt)

For the case where µ = −σ2

2
:

Yt = eσWt−σ
2

2
t

which implies

dYt = YtσdWt



Chapter 3

Numerical Methods in MATLAB

3.1 Solving SDEs arising in population dynamics

Examples utilize MATLAB’s built-in randn function, which generates a normally

distributed, randomly selected floating point number. These numbers are intended

to be independent samples from the normal distribution N (0, 1).

Consider the SDE

dXt = µt(Xt, t)dt+ σ(Xt, t)dWt

Given an SDE depending on t, we add the deterministic component to the random

component. The issue is how to quantify the Brownian increment dWt. As seen

through our analysis of Brownian motion, we draw a random number r from N (0, 1)

and multiply it by
√
∆t in order to achieve convergence, thereby replacing dWt by

r
√
∆t in our calculations.

19
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3.2 Comparing analytical and numerical solutions

In order to further justify our numerics, we look to compare expectations for numerical

and analytical solutions. For the probability density function

p(x) =
1√

2πσ2
e−(x−µ)

2/2σ2

and expectation

E(eX) =

∫
R
p(x)exdx

in order to compute E(eX) we look to solve the following integral:∫
R
ex

1√
2πσ2

e−(x−µ)
2/2σ2

dx

By algebra and completing the square, this becomes

eµ+
σ2

2
1√

2πσ2

∫ ∞
−∞

e−
1

2σ2
(x̃−σ2)2dx̃

with the substitution x̃ = x− µ and dx̃ = dx. By the Gaussian integral

I =

∫ ∞
−∞

e−a(x+b)
2

dx =

√
π

a

then squaring and converting to polar coordinates yields

I2 =

∫∫
R

e−a(x
2+y2)dxdy

=

∫ 2π

0

∫ ∞
0

e−ar
2

rdrdθ
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with a = 1
2σ2 . Evaluating at our limits produces

I2 =
π

a
⇒ I =

√
π

a

and therefore

E(eX) = eµ+
σ2

2

[
1√

2πσ2

√
π
1

2σ2

]

= eµ+
σ2

2

[
1
]

= eµ+
σ2

2 (3.1)

Essentially, this is a normal distribution with mean σ2 and variance σ2 and our

Expectation E(eX) = 1 due to the normalization factor. Thus, Equation (3.1) has

been derived as our analytical formula for computing expectation.
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3.3 Calculating Passage Time of Brownian Motion

Trajectories

Events are often triggered when a stochastic or random process first encounters a

threshold. The threshold can be a barrier, boundary or specified state of a system.

The amount of time required for a stochastic process, starting from some initial

state, to encounter a threshold for the first time is often referred to as the first hitting

time. In statistics, first-hitting-time models are a sub-class of survival models. The

first hitting time, also called first passage time, of a trajectory with respect to an

instance of a stochastic process is the time until the stochastic process first falls

below a specified threshold. Given that Brownian motion is used often as a tool to

understand and model more complex phenomena, it is important to understand the

probability of a first passage time for a Brownian motion trajectory in reaching some

threshold value.[5] A particle in Brownian motion taking the time to hit a specific

point a may be modeled by this distribution by setting its scale parameter c = a2.

The probability density function of the Lévy Distribution is

p(x) =

√
c

2π

e−c/2(x−a)

(x− a)3/2

for scale parameter c with c > 0 and location parameter a with x > a. As previously

discussed, the formula for computing expectation is

E(x) =

∫ ∞
0

xp(x)dx

For a = 0, the first moment, or expectation, of the Lévy Distribution is defined as√
c

2π

∫ ∞
0

xe−c/2x

x3/2
dx
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which diverges as x→∞.

This is investigated through the following means. With a threshold value specified

as K = 2, numerous Brownian motion paths were computed, and the times for each

path to hit this threshold were stored in a vector t fall. The following histograms in

Figure 3.1 depict hitting times for these trajectories with 1000 time-steps, increasing

the number of runs to reveal convergence, if any.
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Figure 3.1: Resulting histograms showing first passage times of Brownian motion
trajectories

Note: There is no convergence to a Gaussian Distribution. Instead, this data follows
what is known as a Lévy Distribution. These distributions have heavy tails, which
contributes to the fact that the expectation diverges. The typical passage time for
these distributions can instead be estimated by the maximum value.
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Applications and Explorations

4.1 Quantifying Time to Extinction

A process is said to be ecologically stable if the extinction does not occur within a

realizable time interval. A quantity of interest is the expected time until extinction,

which we will call Ex. After running our simulation to output stochastic population

trajectories using Exponential Brownian motion, we can calculate the average time

for trajectories to fall below a threshold value, functionally sending populations to

extinction. We also calculate the percentage of species to go extinct during the spec-

ified time interval with identical initial conditions.

As previously mentioned, the distribution of Brownian motion hitting times has in-

finite expectation. For the Lévy distribution, typical hitting times will be estimated

using the maximum on the distribution.
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One simulation of our Exponential Brownian motion model applied to population

dynamics, mystochpops.m, with 300 time-steps and 200 paths produces:
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Figure 4.1: Exponential Brownian motion simulating population dynamics

With the threshold value set at 2 and initial population size of 10, the typical extinc-

tion time for this single simulation is at time-step 206.8431, or time t = 20.684, and

the proportion of species that reach extinction P (ext) = 0.2550.
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4.2 Stochastic Logistic Models

Stochasticity is incorporated into the deterministic logistic population model with the

following techniques using the Forward Euler Scheme. There are numerous approaches

to be investigated involving how to incorporate the noise term. In this first model, a

linear noise term σ ∗ randn ∗
√
dt is added on at each time-step. Graphics below for

carrying capacity K = 5000, per capita growth rate r = 0.1, P0 = 100, and varying

σ. We assign σ = 0, 30, 50, 70 from top left to bottom right, respectively.

Figure 4.2: Stochastic Logistic model with varied degrees of added noise

Notice that this additional noise term does not drastically alter the trajectory. Slight

perturbations continue to repel the path from the initial state, and the carrying

capacity value will continually attract the function despite perturbations.
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The next model to explore involves a fluctuating carrying capacity. At each time-

step, our stochastic term is added onto the carrying capacity, causing the function’s

equilibrium to wander randomly. This added stochasticity simulates the continuously

changing capacity of an ecosystem. Below are four realizations with initial carrying

capacity K = 5000, per capita growth rate r = 0.5, P0 = 500, and varying σ. We

assign σ = 10, 50, 80, 200 from top left to bottom right, respectively.
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Figure 4.3: Stochastic Logistic model with fluctuating carrying capacity
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Conclusions

5.1 Future Research

Future research should delve into which variable(s) to put the stochastic term into,

and how exactly to incorporate it. We may bring stochasticity into the growth rate,

the carrying capacity, or an added on linear noise term. Each of these methods will

produce a different answer. Inserting stochasticity into a fixed term would mean that

near either fixed point, there would be little effect. Inserting stochasticity into the

carrying capacity moves around the system’s stable fixed point. Thus, trajectories

would constantly trying to reach the new and continuously changing fixed point. In

this proposed case, would it still be correct to classify this “stable fixed point” as

stable or fixed? Ecologically, this makes sense due to an increase in environmental

stochasticity arising from a changing climate. Varying weather, food supply and loss

of habitat are key components that constitute what the environment can support, i.e.

the carrying capacity. An added linear term of Brownian motion with its nice con-

vergence theorems can be handled analytically, which is one reason it is a significant

simple mathematical model for describing and exploring how to handle stochasticity.

28



Bibliography

[1] Douglas Wilkin and Barbara Akre. Limits to Population Growth. CK-12, CK-12

Foundation, 11 Dec. 2015.

[2] Russell Lande, Steinar Engen, and Bernt-Erik Saether. Stochastic Population Dy-

namics in Ecology and Conservation, Oxford Univ. Press, 2009.

[3] The Editors of Encyclopaedia Britannica. Random Walk., Encyclopdia Britannica,

Inc., 2008.
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