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Abstract

This study seeks to explore the area of contract valuation and the issue of no-strike

clauses in construction contracts. The belief is that this area represents an extension of

the idea of real options and forward contracts for a commodity that is intangible, like

a no-strike clause. In a construction contract, Project Labor Agreements (or PLAs)

are the method by which labor clauses of a construction project are controlled.This

research is motivated by Dr. Jonathan Peters and his analysis on the Building and

Construction Trade Council of NY (the organization of construction unions in New

York) who were told by a judge in a labor dispute case that no-strike clauses had

no value. CCNY and the College of Staten Island worked on developing methods

to understand the value that is created by a no-strike or other labor clauses that

are controlled through what is called a Project Labor Agreement (PLA). This study

hopes to explore a general model to understand the drivers of value and the more

specifically the value created by no-strike clauses. No-strike clauses can be extremely

lucrative given the safety net they provide in the area of risk management. This

research hopes to see a correlation between valuing real options and these no-strike

clauses.



Chapter 1

Introduction

The New York City Mayor’s office of Contract Services defines Project Labor Agree-

ments (PLAs) as ”An agreement by an owner (here, the City) with construction

trades that all bidders must agree to as part of a responsive bid. Subcontractors to

be used by prime contractors on a City contract must also agree to the terms of the

PLA to be approved.”[7] In other words PLAs are collective bargaining agreements,

whereas all parties involved have a set of distinct requirements for a project that are

negotiated. Each PLA is a contract that has a malleable set of requirements, and is

meant to be individualized for every contract. After reviewing eight PLAs from New

York State and other parts of the country, it was determined that thirteen variables

remained a common thread among the PLAs. Table 1 identifies the variables and an

example of how each variable may be individualized for a particular project.

The variable that is synonymous with PLAs is the ”no-strike clause,” in other

words an agreement to not halt work on a project in exchange for negotiated terms.

The agreement is made to get the ”best work for the money with far greater likelihood

of on-time, on-budget performance.”[3] The terms listed below are negotiated until

an agreement is in place that holds both the employer and employees accountable

1



CHAPTER 1. INTRODUCTION 2

Type Common Variables
No Strike Clause A staple of PLAs
Jurisdictional Disputes Decided by the employer
Workweek(Days) 5 designated days
Meal Period/Lunch Half and hour per shift
40 hr Workweek 8 hour shifts, doubling shifts negotiable
Start Times Between 6am-9am
Overtime Time and a half
Holidays 8 holidays recognized (Nonnegotiable: Labor Day)
Shift Work Prior notice required
Reporting Pay Every 2 weeks
Injury/ Disability Paid for a full day, on day of injury
Payday Weekly
Grievances 7 day calendar notice, if not resolved, 7 day arbitration

Table 1.1: Project Labor Agreement Variables.

for a set of previously stated terms within a previously determined time table.[3]

This completely transparent time table is what allows the PLA to provide a fair

negotiation. Putting in place a provision that protects a project from costly delays

can be key when time is a major factor of success in a project. During a delay

caused by a strike or a jurisdictional dispute, equipment stands idle while racking

up costs for its use and housing. These costs along with others will be examined to

determine a value for the No-strike clause in a PLA. In order to provide a value for

this no-strike clause it is beneficial to think of it in a similar fashion to those non

tangible assets that are traded in futures and forward contracts. Weather options in

the weather derivatives market [4] is experiencing increased growth as a number of

businesses are facing loss in the midst of bad weather. One area that is benefiting

from weather options are energy producing companies. They utilize weather options

to ”...hedge their risks”[4] with options based on a number of variables that include

”... temperature, humidity, rain or snowfall.”[4] Similar to PLAs the variables that
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play a key role in the value of the option are volatile and extremely unpredictable

much like the human interactions that could lead to a strike. This study will use the

pricing model practices for pricing weather options like in the paper ”On Modelling

and Pricing Weather Derivatives.”[11] One of these practices involves using historical

data to observe the past volatility of an option. This methodology will play a key

role in the valuation of the no-strike clause ”options” formula.



Chapter 2

Background

2.1 Project Labor Agreements

PLAs with a no-strike clause have been used for multiple decades, the first time

that PLAs were upheld in court was in 1994 with the renovation of the Tappan

Zee bridge.[5] This PLA, which was later discovered to save ”6 Million Dollars”[5],

made a serious leap for the acceptance of PLAs in the construction labor force. The

acceptance of PLAs has made progress by way of becoming the New York City School

Construction Authority’s Labor Law Compliance standard. [18] These PLAs have

been present with the SCA since 2005, with agreements lasting from 2005-2009, 2010-

2014 and 2015-2016. [18] These PLAs are some of the largest and most longstanding

public agreements, with the continued implementation of these PLAs standing as a

testament to their savings. The use of PLAs for something as time sensitive as the

continuous renovation of schools is comprehensible, with the risk of effecting NYC

Department of Education calendars and the wellbeing of NYC students. PLAs are

perhaps most beneficial to those with these time constraints, and with the number of

variables available for negotiation, the individualization of PLAs and the benefits of

4



CHAPTER 2. BACKGROUND 5

a no-strike clause can provide an accordance with client and construction company

wishes.

2.2 No Arbitrage Pricing

There are a number of ideas to keep in mind when discussing the pricing of options.

One of the first is the utilization of a derivative, this is a contract between two parties

which derives its value or price from an underlying asset.[14] The buyer of the contract

or ”option” acquires the right (but has no obligation) to buy or sell the option at an

agreed upon price at a future time.[1] Two alternate forms of this option are ”call”

and ”put” options. The latter invokes the right for the the holder of the option (not

the obligation) the to sell a stock for a price, K (the strike price) at a future time. A

call option will give the holder of the option the right to buy stock for a particular

price. Call and put options are only exercised when a stock is ”in the money” in

other words, when it begins to have value for the option holder. For a call option this

occurs when the price of a stock rises, (ST −K)+ where ST is the price of the stock at

the exercise date.The put option is exercised when the stock price falls,(K −ST )+.[1]

Another way to represent this is:

(ST −K)+ = max(ST −K, 0)

(K − ST )+ = max(K − ST , 0)

With the idea of derivatives explained, let’s explore one of the most common

contracts, forward contracts. Forward contracts are customized contracts between

two parties to buy or sell an asset at a specified price on a future date.[15] These

parties involved go into the contract privately and decide upon a price with a pre-

determined volatility, set for one date in the future to purchase and sell the asset.
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Forward contracts only involve the parties that are buying and selling the options,

that is, there is no regulation to ensure that neither party will default. [15] Should

this contract have involved a third party (a clearing house) to guarantee the delivery

of this asset the risk would be lowered but the customization on delivery date, asset

and delivery method would be restricted.

The pricing of these options described above invokes the common thread among

these models, that is a no-arbitrage pricing method. Arbitrage is the ”simultaneous

purchase and sale of an asset in order to profit from a difference in the price.”[16]

This is essentially utilizing the market that these transactions take place in and

manipulating the stock and bond interactions to make something from nothing. In

an efficient market this should not be possible. As one will see with the next few

sections, widely accepted pricing models that are to be correct must be fitted with

an arbitrage free component to ensure a fair and ”risk-free” price.[1]

2.3 Black-Scholes Model

The Black-Scholes model for pricing derivatives has been a key player in determining

the value of options in both the American and European financial markets. The Nobel

Prize winning formula has been used for over a century, it was made public in 1973 its

creators, Robert Merton, Myron Scholes, and Fischer Black.[9] The formula has been

widely used since then and gave great success to hedge funds like ”Long Term Capital

Management.”[9] The Black-Scholes formula relies on a number of conditions to be

successful when the determining the value of an option. Foremost, the arguably most

important variable in the formula is the options volatility; as variables in the Black-

Scholes formula go, this is the most individualized part of the formula. It is largely

historically based and is determined by the up and down trends of the price of a stock,

with a trend observed and noted the stock’s ”average” value is determined. Volatility
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is counted on the fact that deviations from the mean will be most likely closest to

the mean. Lets observe a Facebook stock trading for 30 dollars for example, that is

typically traded with a volatility of 0.03, in turn a change of 90 cents is expected with

this option.

An indispensable part of this formula is that major deviations from the mean

are not what is to be expected, instead, historical changes based on normal market

conditions are to be expected. One way this is evident is with the physics approach

to the Black-Scholes formula[9], that is, its key component is the normal distribution

that is used. The bell curve is widely used in academia as the natural tendency

of many predictable events to occur, most notably ”...the most likely paths that

something buffeted by these randomly moving particles [atoms].”[9] By considering

the movement of atoms similar to that of changing stock prices it supports the widely

accepted methodology involved in the Black-Scholes formula, that stock prices, and

in effect the value of the options that stem from them, are random events. It should

be noted that the Black-Scholes formula is widely accepted not due to the seamless

nature of the calculation, instead, it is used under the prospect that, ”Everything that

is tweaked, however, leads to more issues. Today, there is no clear successor to the BS

model.”[12] The inputs of Black-Scholes do posses a number of limitations that should

be noted. The first being that the model itself is designed for valuing an option that

can only be exercised at the date of expiration, in other words a ”European option”

with no dividend opportunity.[13] An American option can be exercised at any point

before the exercise date and dividends are inevitable.[13] One of the last assumptions

that are made in the Black-Scholes model is that of a constant volatility for the life

of the option. This is a generalization made that allows for a point estimate of a

sample space of strike prices for a historical period of the stock. The variance of the

historical data collected is inputted as in the equation. Volatility plays a key role in

the development of the formula, including the binomial tree equation for the portfolio
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that Black-Scholes aims at replicating.

The Black-Scholes formula utilizes a number of variables from the underlying asset

in question, to determine the fair price of the call or put option. As explained in the

formula below, five measures of the option are required. It is important to note that

the time variable in the formula, T is in days. The number of days until expiration

is to be converted as necessary, with 365 as the denominator (or 252, accounting for

the actual number of trading days in a year).

Black-Scholes Formula (European Call Option)

V = EQ

[(
S0e

σ
√
TZ−σ

2

2
T − ke−rT

)+]
= S0Φ

( ln(S0/k) + (r + σ2

2
)T

σ2
√
T

)
− ke−rTΦ

( ln(S0/k) + (r − σ2

2
)T

σ2
√
T

)
= S0Φ(d1)− ke−rTΦ(d2)

2.4 Derivation of the Black-Scholes Formula

As stated before there are a number of assumptions made to derive the Black-Scholes

formula. Firstly, this is a European call option, as such the date of expiration is the

only time the option may be exercised. This assumption is important later on when

discussing the δt as it pertains to the derivation of the Black-Scholes formula. The

next assumption follows the goal for options pricing models to price options with no

arbitrage and in turn a risk neutral situation. The final assumption of the Black-

Scholes formula, for this derivation, is that the risk free rate is equal to zero. For this

derivation we will consider a call option.

We must first consider that in the first interval of time, t=1 a stock has the option

to go in two directions, it can go up in price (u) or down (d).In this discrete situation

stock processes follow a binomial distribution. Following a number of up and down
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movements it can be considered that n is the number of up and down movements the

stock follows and the number of successes p=instances of u (since this option is a call,

these derivative are ”in the money” and exercised when the price of the stock goes

up) and the number of failures q=instances of d. Both of the directions the stock

may take posses the same probability of 1/2 [1].

Now, as we discussed, this binomial property of stock movement considers a dis-

crete number of n, in terms of binomial distribution, between two data points within

a time t there is no value between the two. In the world of stock movement within a

time interval there are a (in theory) infinite number of movements a stock can take.

This leads to the consideration of stock movement in the continuous sense, by which

every two data points would have a data point between them. With the number of n

”increasing” to infinity the distribution of the stock data is continuous and therefore

normal by the Central Limit Theorem [1].

With normal distribution in mind it is now time to observe the idea of random

walks. We consider a random walk, Wn in time interval [0,1] with n steps. This time

interval allows for only a discrete form of movement for the stock, with δt = 1/n.

However, now that the stock process is defined as normally distributed the random

variable generator integral to the Black-Scholes Model, Brownian motion, Wt, can

come into play. This new continuous from of random walks utilizes the convergence

of Wn to Z where Z ∼ N(0, 1) Brownian motion is the ”... idealization of the

trajectory of a single particle being constantly bombarded by an infinite number of

infinitesimally small random forces.”[21]. Brownian motion considers the random

walks or ”up and down” movements by the measure to be infinite with a continuous

time interval. Wt will generate a random variable that is normally distributed,

Wt ∼ N(0, t)
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where mean is equal to 0 and variance is t.

With a continuous random variable generator now found, the next step in deriving

the Black-Scholes Formula calls upon the notion that this call option is to be valued

under a risk neutral measure with no arbitrage, that is, no opportunity for ”free

money” where the risk free rate is equal to zero. The goal with the Black-Scholes

Formula is to price an option in a market that maintains equilibrium.[1] In order

to achieve this arbitrage free pricing model we must observe the transition between

a stochastic differential equation (SDE) with exponential Brownian motion to one

that also possesses a risk neutral measure to eventually produce the arbitrage free

Black-Scholes model to evaluate an option.

Let us first borrow the SDE with exponential Brownian motion (for this derivation

we assume that the interest rate r = 0):

St = Soe
µt+σWt

Using Ito’s Lemma, we find

dSt = St

(
µdt+ dWt +

σ2

2
dt

)
= σSt

(
µ+ σ2/2

σ
dt+ dWt

)
Let

dW̃t =
µ+ σ2/2

σ
dt+ dWt

This step now calls for a change of measure, one that not only provides a risk neutral

measure but one that removes the drift µ from our formula. To do this one must invoke

the Cameron-Martin-Girsanov theorem which allows us to construct a martingale

measure. A martingale is a characteristic given to a stochastic process where under

the filtration of a sub process Fs a process Xt has an expected value of Xs based

off of that stock portfolio (up and down jumps) determined by that filter [1]. This
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martingale may only exist if the drift in the SDE is equal to zero and follows that

E(Xt|Fs) = Xs

With this criteria for martingales we must now find the γ that will create this mar-

tingale and in effect take away the drift in the measure µ.

Recalling that

dW̃t =
µ+ σ2/2

σ
dt+ dWt

We invoke Girsanov and have

γ =
µ+ σ2/2

σ

and borrow that [16]

W̃t = γt+Wt

W̃t − γt = Wt

plugging back into St

St = Soe
µt+σ(W̃t−γt)

St = Soe
µt+σW̃t−(µ+σ2

2
)t

Combining positive and negative drift terms will take away the drift, we now have a

stock process St (with a risk neutral rate of 0) where µ = 0, hence, producing and

arbitrage free model and

St = Soe
σW̃t−(σ

2

2
)t

Note that W̃t is a Q-Martingale Brownian motion. Finally, we borrow that

dSt = σStW̃t
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the value of a call option is

V = EQ((St −K)+)

the Black-Scholes formula.

2.5 Volatility

Volatility is a complex measure that, as in the case with the Black-Scholes formula,

is used to determine the fluctuations of the market and how they will effect the asset

of the option at the time of expiration.[1] In variations of the Black-Scholes formula,

volatility of the option is denoted as sigma, σ, a symbol that is commonly used in

statistics as the standard deviation of a set of data. The standard deviation, when

used as a statistical measurement, can also be a contributor to historical volatility.[1]

Standard deviation, most simply put, is the dispersion from the mean. With histor-

ical volatility, the variations from the expected average price of an option based on

historically collected and analyzed data can provide insight into the level of risk of an

option. This measure of risk is essential and often times ambiguous calculation, the

historical volatility is used as a stand-in for an expected volatility since predictions

of the tendencies of an option are most widely associated with its history, the same

could be said for strikes by union construction workers in the labor force. The juxta-

position of options of an underlying asset in the forms of calls and puts, to the risk

deterrents of a no-strike clause leads to impending questions about volatility and its

use and assumptions in models like the Black Scholes.

With a historical approach being the forthright path it is probable to assume that

volatility is calculated from the relative prices of an asset. More specifically, ”the

difference in log prices, which will be normally distributed” [1] taking the natural log

of an earlier price and dividing by the current price. Properties of logs establish that
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this division is in fact a difference between the logs of each price.

ln

(
Price1
Price2

)
With the Black-Scholes model, the d1 or cumulative probability calculation utilizes

this with Price1 = S0, Stock Price at time zero (current stock price) and Price2 = k,

Strike Price.

ln

(
S0

k

)
Distributing this difference over normal distribution determines the number of

standard deviations from the mean, or in this case the average stock price. This

normalization that takes place references the Black-Scholes formula once again where

the cumulative probability is found for two standard normal points,namely, d1 and d2.

The process of finding the volatility and distribution for our no-strike clause model

and more will be discussed further in this paper. First, we must observe a potentially

analogous model and delve into the weather derivatives market.



Chapter 3

Weather Options

3.1 Non-Tangible Asset

The weather derivatives market is a growing entity with a ”more liquid and dynamic

hedging of weather options” [4]. With the lack of a predictable volatility in the fu-

tures sense, whilst still remaining within a historically based expected realm. Like

the predictions made in the Black Scholes formula, weather options do not usually

take into account the ”once in a life time” weather catastrophes. However, anything

that could effect the delivery of other products such as crops or energy do take into

account seasonally present events like hurricanes. The Chicago Mercantile Exchange

is a particular market that takes pride in ”offering multiple risk management oppor-

tunities related to temperature, snowfall, frost, rainfall and hurricanes.”[19] This risk

management can provide a number of safeguards for these energy companies, with

peace of mind that a delayed delivery will not mean zero profit. Now let us look at

the cost of this peace of mind in a similar manor to that of the Black-Scholes formula.

That is, we will borrow the methodology and models from Financial Analyst Peter

Alaton, and Mathematician’s Bounalem Djechiche and David Stillberger’s paper ”On

14
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Modelling and Pricing Weather Derivatives.” This paper finds a pricing model for

weather derivatives on the basis of temperature [11] and we will discuss the methods

and results of this paper in the following sections.

3.2 Distribution, Martingales, and Trajectories:

The Temperature Model

In regard to weather options one of the most traded upon attributes is temperature.

Temperature, unlike an out of season hurricane, is fairly predictable based on histor-

ical data. Another benefit of observing temperature is that most likely the variance

of temperature is not large, in the respect that the deviations from the mean are not

large within a small interval of time. Taking into account that temperature usually

reverts toward the mean, a good candidate to model temperature fluctuations is an

Ornstein-Uhlenbeck process [17] which is written as

dTt = a(Tmt − Tt)dt+ σtdWt

Note that Tmt is the mean temperature at the time t and dWt represents the Brow-

nian increment. In order to revert the mean for this SDE in regards to temperature,

the term
dTmt
dt

must be added to the drift term. According to Alaton [11] a possible

choice is
dTmt
dt

= B + ωC cos(ωt+ ϕ)

The above will act as an adjuster to the non-constant mean temperature and the full

model is then written as

dTt =
{dTmt

dt
+ a(Tmt − Tt)

}
dt+ σtdWt
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Figure 3.1: Graph of temperature fluctuations at Bromma aiport (source: [11]).

As a particular example discussed in Alaton’s work [11], the authors look in detail

at at Bromma Airport in Stockholm, Sweden, during 1989-1997. The following figure

3.1 shows the temperature fluctuations over a span over 40 years.

From there, it was determined that Tmt = A + Bt + C sin(ωt + ϕ) can be fitted

to the data (by use of a parameter vector in the method of least squares). That is,

squaring the difference of the vector with elements from the equation and a vector

of elements from the data obtained ξ = (a1, a2, a3, a4). The constants of the model

(A,B,C,ϕ) are derived from this data to get a function for the mean temperature,

Tmt . With the given parameters this formula produces

Tmt = 5.97 + 6.57× 10−5t+ 10.4 sin

(
2π

365
t− 2.01

)
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The standard deviation, σ, estimation is developed from the data set on a monthly

analysis with each month, µ,with days n taken separately and ”discretised” into an

equation of regression, where a ”regression of today’s is on yesterday’s temperature”

[11]. This estimator is

σ̂2
µ =

1

Nµ − 2

Nµ∑
j=1

(
T̃j − âTmj−1 − (1− â)Tj−1

)2
Now that the mean temperature formula, constants, and formula for the estimator

of σ have been derived, the final component is the estimator of the mean-reversion

parameter, a, which is used throughout. A martingale estimation factor to estimate

this parameter is utilized with expected value of temperature Ti being filtered on the

temperature that came before it Ti−1:

E[Ti|Ti−1] = (Ti−1 − Tmi−1)e−a + Tmi

This martingale is entered into the formula for the estimator of a which is denoted

ân [13]. In order to find this one must do so in the from of the ”martingale estimation

functions method.

Gn(ân) = 0

Where n is the number of days in the month and

Gn(a) =
n∑
i=1

Tmi−1 − Ti−1
σ2
i−1

{Ti − (Ti−1 − Tmi−1)e−a − Tmi }

Further analysis and implementation of the data set produce an ân which allows the

temperature model to ”...have the same properties as the observed temperature.” [11]

This model is able to simulate trajectories of the observed temperature spanning the
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40 year data set.

3.3 Market Risk, Expected Value, and Variance

As explained in the first section of this chapter, weather derivatives are not able

to be priced by the traditional method as with tangible assets. Instead, weather

derivatives are priced on risk. The ”market price of risk, λ” which is to be assumed

constant as a result of no true market for risk developed.[11] As with the Black-Scholes

model derivation assets for the weather markets are to be assumed to be risk free and

possessing a constant interest rate of r (note that in our simplified derivation we gave

r the value of zero). Q-Martingales remain a major part of this pricing model, where

Vt is the new risk neutral Q-measure. The ”price process” Tt maintains the following

dTt =
{dTmt

dt
+ a(Tmt − Tt)− λσt

}
dt+ σtdVt

Where t ≥ 0. The change of measure above is conducted using a Girsanov trans-

formation, in order to provide that risk neutral measure, in an analogous fashion to

the Black-Scholes Model. The price of an option is based on the expected value and

variance, and both have been derived and generalized for large time intervals.[11] This

takes into account the use of integrals that are split into the sum of two integrals to

find the expected value and variance between two time ticks. In the case of weather

options this can be done for the difference of temperature between the first day of

the month and the last. This interval can be broken up into smaller intervals with

its overall count increasing (similar to the n ”increasing” to infinity with the Black-

Scholes model). The price process expected value is represented by EQ[Tt|Fs] and

variance V ar[Tt|Fs].



CHAPTER 3. WEATHER OPTIONS 19

3.4 Derivative Pricing: Weather Market

In the weather derivatives market there is a standard of temperature derivatives based

on ”heating or cooling degree days” [4] represented as HDD and CDD respectively.

The paper that the pricing model is based off of uses an HDD call option to exemplify

how to price weather derivatives. We should first observe that HDD is the number of

degrees (in degrees Celsius) that a temperature will vary from for the day. Heating

degree days usually take place from November to March as that is when temperatures

are coldest and the highest likelihood of energy usage by families (recall that energy

distributors are the some of the largest to benefit from weather derivatives). [11] The

temperature standard in the U.S. (and utilized in European markets) is 18◦ Celsius

(65◦ Fahrenheit). HDD is generated by

HDDi = max{18− Ti, 0}

and alternatively, CDD

CDDi = max{Ti − 18, 0}

Note that the generators of these values resemble that of non-weather deriva-

tive markets, where the date of expiration decision to be exercised is based on the

maximum difference of strike price and stock price (see 2.2).

We borrow that HDD payout is done by these two methods

χ = α max {Hn −K, 0}

Hn =
n∑
i=1

max {18− Tt, 0}

where α=1 unit of currency/HDD.

Under the Q-martingale risk neutral measure it is noted that Tt ∼ N(µt, Vt), on a
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particular winter day where Hn is an accumulation of the month’s temperatures we

know that Tt is a Gaussian or normal process by the previous sections. Borrowing

from Alaton [11],

EQ[Hn|Ft] = µn

V ar[Hn|Ft] = σ2
n

as such, the distribution of Hn is N ∼ (µn, σn). The final result as the call HDD

option pricing formula is

c(t) = e−r(tn−t)Eq[max{Hn −K, 0}|Ft]

= e−r(tn−t)
∫ ∞
0

(x−K)fHn(x)dx

= e−r(tn−t)
(

(µn −K)Φ(−αn) +
σn√
2π
e−

α2n
2

)
where αn = (k − µn/σn). Like the Black-Scholes formula, thanks to the normal

distribution of the pricing formula, the cumulative distribution is also found here.

Unlike the Black-Scholes formula, the temperature pricing model still allows for the

drift term, µn to play a role in the formula hence not producing a no-arbitrage model.

This leaves room for speculative betting and unlike Black-Scholes does not prohibit

the availability of free money. However, unlike the trading of tangible assets the

weather derivatives market is based solely on risk and betting, so this distinction is

rather probable.



Chapter 4

The No-Strike Clause Option

Now that we have explored two models that play key roles in derivative pricing, the

first being the industry standard of Black-Scholes and the second being the tempera-

ture derivatives pricing model, it is in this chapter that we will provide examples for

the pricing of the ”No-strike clause” of Project Labor Agreements.

We will approach this pricing with the idea that each day of a strike will cost

the owners of a project the equivalent value of those days not on strike. The price

will be a percentage of the yearly money spent (in this case salary). Borrowing from

the Bureau of Labor Statistics we will use the term ”days idle” to describe these

days where work has been stopped; the BLS utilizes data for ”work stoppages” with

the following characteristics: they are large work stoppages with > 1, 000 workers

involved, they include both strikes and employer initiated lockouts, they must last at

least 1 shift.[22]

21
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Figure 4.1: Number of days idle per work stoppage. (source: [22]).

4.1 Work stoppages data

Utilizing the work stoppages data from the BLS, here is a table examining the average

number of days idle per work stoppage occurrence by year. We will use the last 20

years as a reference. (i.e. 1996-2015)

For this study we will calculate a number for the number of days idle in a given

year for a strike. To do this we take the average of the number of strikes per year,

20.25, and then find the average number of days idle per each strike, 0.96, multiplying

the two, we get that the average number of days spent idle in a given year is 19.51.

We must now normalize this.

We will be using the percentage of the number of working days in the New York

City calender which is 252 days. This will be used as the percentage of yearly money

spent which will act as a normalization for the potential salary lost on the days idle

from striking. Which will in turn be the expected loss due to striking. Taking the

number of days idle over the number of working days in a calendar year,

19.51

252
= 7.74%
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the percent of the number of days idle for a strike in a given year is 7.74%. We may

also look at the number of days idle per one strike in a given year,

0.96

252
= 0.38%

with less than 1/2 a percent per day.

In order to determine the cost savings from a no-strike clause we will use the data

above to develop a method for the percentage for a potential loss of profit from a

strike. This will allow for the determination for cost savings and/or how expensive

including a no-strike clause may be for a project. To do this, we must determine the

expected loss for a project and this will be done assuming two distributions in the

discrete form, Uniform distribution and Poisson distribution.

4.2 Probability Distribution

To calculate the expected loss we will first consider the loss using Uniform Distribu-

tion. We will utilize the property of the expected value, or mean, of this distribution

n∑
i=1

xipi

where xi is the loss from strike in one year (by working days= 252). And the pi will

be equal to the uniform distribution with the denominator of each probability or pi

given by the maximum, b, and minimum, a, to strike days as determined by the data

examined in Figure Three. For simplicity we will mirror the methods of Black-Scholes

and make a number of assumptions.

First, we will be observing the discrete case of one year with 252 working days, the

expected loss calculated from the occurrence of one strike with a varying number of
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Days per year pi
1 1/3
2 1/3
3 1/3

Table 4.1: Uniform Distribution: Days Idle.

days of duration. Table 4.1 depicts the range of one strike duration from data taken

over the past twenty years. Each data point was rounded up to whole days.

Now that we can see clearly the probability of each strike duration, we must find

the loss or, xi, of each strike duration.

x1 = 1 · (0.0038) = 0.0038

x2 = 2 · (0.0038) = 0.0076

x3 = 3 · (0.0038) = 0.0114

Inputting the probabilities into our formula for E(x).

E(x) = 0.0038 · (1/3) + 0.0076 · (1/3) + 0.0114 · (1/3)

E(x) = 0.0013 + 0.0025 + 0.0038

E(x) = 0.0076

The expected loss per strike in one year for a project is 0.76% of earnings or in

this case salary, when assuming Uniform Distribution.

The second distribution we will consider for the determination of loss by the

varying duration of a strike is Poisson Distribution. The ”days per year” variable will
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be the same, and the calculation of the expected value will follow

E(x) =
∞∑
n=1

np(n)

E(x) =
∞∑
n=1

n · e
−λλn

n!

Where by properties of the Poisson Distribution,

E(x) = λ

For this Poisson Distribution determination of E(x) we will be using the probability

of a strike for one year, 0.0038. Therefore the expected value for a strike in a given

year is,the sum of the probability for a strike,0.0038, multiplied by the days idle.

E(x) = 1 · (0.0038) + 2 · (0.0038) + 3 · (0.0038)

E(x) = 0.0038 + 0.0076 + 0.0114

E(x) = 0.0228

In deciding which distribution would be the most ideal for our model, we will take a

look at a relative frequency histogram for the last twenty years of work stoppages.

This histogram does not display the visual representation of either distribution

(Uniform or Poisson) which results in the ideal distribution not being found. We

have explored two possible distributions to be used for the pricing of an option in the

world of Project Labor Agreements. The no-strike clause model we have considered

will take into account the loss of each day of a strike as a proportion of the salary

and/or project costs. This customization ability goes hand in hand with PLAs as one
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Figure 4.2: Relative frequency histogram for the last twenty years of work stoppage.
(source: [22]).

of the key factors of appeal with construction contracts.



Chapter 5

Conclusion: Value of the no-strike

clause

This study sought to explore the areas of contract valuation and determine if a value

for a no-strike clause can be found. With two distributions considered and the models

for a comparable non-tangible asset examined, the value that comes from a no-strike

clause possess two properties. The first property, much like weather options, owners

of a PLA are ultimately purchasing an insurance policy, the cost of that peace of mind

can vary depending on the needs of each project owner. In order to develop a method

by which a value can be found for such volatile methods, our model has maintained

a method of comparable analysis. In our model the value of a no-strike clause equal

to the expected value of that strike multiplied by the salary of a projects employees.

By uniform distribution the expected value is 0.0076(S) where S = salary and by

Poisson, 0.0228(S). Therefore, the owner of a contract has the ability to save either

0.76% in salary costs for each day idle in the case of a strike, or 2.28%. Depending

on the scope of the project, the number of trades involved and the significance of

time on a project, these differences can mean quite a lot in the field. Project Labor

27
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Agreements can provide a range of safeguards for both the owners of a project and

the contractors involved, the value of these contracts vary greatly. Following this

analysis of the no-strike clause, there is a potential value of this clause in the project

involved, whichever distribution an expected value is calculated for. The value of a

no-strike clause, and in turn a peace of mind on striking, is equated to a number of

missed days. These missed days and altered schedules are all within prevention, that

is, at the right price.
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