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ABSTRACT

A simple model for human circadian system is studied. The behavior of humans and other animals is differentiated by precise
24-hour cycles of rest and activity, sleep and restlessness. These cycles termed circadian rhythms and represent a fundamental
adaptation of organisms to a pervasive environmental stimulus; the solar cycle of light and dark. A fundamental property of
circadian rhythm is that it is free-running, and continues with a period close to 24 hours in the absence of light cycles or other
external cues.The sleep-wake and body temperature rhythms are assumed to be determined by a pair of coupled nonlinear
oscillators described only by phase variables. This article presents principles of mathematical modeling on human circadian
system and how other important two-dimensional phase space systems work.
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1. Introduction
The circadian cycle has been studied mathematically using oscillators and other non-linear dynamical models to describe
features of sleep-wake rhythms. A review of early mathematical models of sleep-wake cycle is given by Strogatz [1]. The
free run studies of human subjects which lived alone clock-less environment, absence of external light-dark cycle and other 24
hour periodicities of the outside word had been analyzed by Czeisler and Wever. Their experimental data discovered some
surprising regularities in timing of the subjects’ spontaneous sleep episodes. In many mathematical model, postulated at least a
pair of oscillators to describe occurrence of ”Spontaneous internal desychronization” between the sleep-wake cycle and various
autonomic circadian rhythms. Strogatz emphasized that a free-running subject unknowingly lives on a ”day” which is longer
than 24 hours during internal desynchronization. More precisely, a free-running subject lives 30-50 h long day and during this
period their body temperature and neuroendocrine variables controlled by the circadian pacemaker continue to oscillate with a
stable period of 24-25h. This phenomenon does not occur in real life. In ordinary life, on regular schedule, the circadian and
sleep-wake rhythms are typically phase-locked to one another and to the 24-h environment.

There is a interplay among jet lag or a rotating shift work schedule and sleep-wake cycle, the circadian cycle. The effects of
jet lag, shift work schedules and insomnia affect economically to million of people each year. This phenomenon encourages to
research on the human sleep and circadian rhythms.

The purpose of this article is to revisit the simple model of the human sleep-wake cycle proposed by Steven H. Strogatz
[1]. This model based on two-dimensional phase space on tours and its equations may be solved analytically. The resulting
analytical transparency allows us to sort out which of the observed phenomena follow from simple mathematical consideration
alone, as distinct from those which require some additional biological explanation.

The remainder of this paper is organized as follows. Circadian models incorporating light responses have been seen, for
some parameter ranges, to exhibit multiple dynamic behaviors, including coexistence of a steady state and an oscillating
solution or coexistence of two oscillating solutions. Therefore, in Section 2 we briefly discuss, dynamical systems and it’s basic
concepts. Section 3 reviews the trivial case of uncoupled oscillators. In Section 4, analyze the Strogatz’s simple model of the
human sleep-wake cycle, and finally in Section 5 indicates how Oscillators death and bifurcations on a torus works using the
Ermentrout and Kopell (1990)’s model ” Oscillator death”.



2. Dynamical Systems and it’s basic concepts [2]

2.1 Introduction

There are two main types of dynamical system: differential equation and iterated maps. Differential equations describe the
evolution of systems in continuous time, where as iterated maps arise in problems where time is discrete. The theory of
dynamical systems deals with the evolution of systems. It describes processes in motion, tries to predict the future of these
systems or processes and understand the limitations of these predictions.

2.2 Asymptotic behavior of dynamical system

Asymptotic behavior refers to the long-term evolution of the solutions of the dynamical system as time goes to infinity. The
subset of the phase space on which the trajectories reside at t→ + ∞ are called limit sets. These limit sets organize the vector
flow in their vicinity. A limit set is called an attractor if all trajectories in the neighborhood moved towards this limit set and a
repellor if the vector flow is directed away from the limit set. The simplest kind of limit set is fixed point.

2.3 Fixed Points and Stability

Consider any one-dimensional system ẋ = f (x).

Figure 2.3.1

A picture like Figure 2.3.1, which shows all the qualitatively different trajectories of the system, is called a phase portrait.The
appearance of the phase portrait is controlled by the fixed points x∗, defined by f (x∗) = 0 ; they correspond to stagnation points
of the flow.The solid black dot it a stable fixed point, where the local flow is toward it and the open dot is an unstable fixed
point, the flow is away from it. The fixed points represent equilibrium solution, which is also called ”Steady” in term of the
original differential equation. An equilibrium is defined to be stable if all sufficiently small disturbances away from it damp
out in time. Further, stable equilibria are represented geometrically by stable fixed points and unstable equilibria, in which
disturbances grow in time, are represented by unstable fixed points.

A two- dimensional linear system is as system of the form;

ẋ = ax+by
ẏ = cx+dy

where a, b, c, d are parameters. This system can be written more compactly in matrix form as ;

ẋ = Ax

Where

A =

[
a b
c d

]
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and

x =
[

x
y

]
Such a system is liner in the sense that if x1 and x2 are solution, the so is any liner combination c1x1 + c2x2. Then ẋ = 0 when

x = 0, so x∗ = 0 is always a fixed point for any choice of A.

Classification of Fixed Point

Figure 2.3.2: Fixed point -Two-dimensional systems. Not shown: unstable versions of node, spiral, and star (reverse

direction of arrows to turn stable into unstable).

Figure 2.3.2 summarized the major type of fixed points. For two-dimensional system, there are five generic types of fixed
points. They are classified according to the eigenvalues of the linearized dynamics at the fixed point. For a real 2x2 matrix, the
eigenvalues must be real or else must be a complex conjugate pair. The five types of fixed points are then

λ1 > 0,λ2 > 0 : (1) unstable node
λ1 > 0,λ2 < 0 : (2) saddle point
λ1 < 0,λ2 < 0 : (3) stable node
Re(λ1)> 0,λ2 = λ ∗1 : (4) unstable spiral
Re(λ1)< 0,λ2 = λ ∗1 : (5) stable spiral

Where λ s are eigenvalues.

2.4 Limit cycles

A Limit cycle is an isolated closed trajectory. This mean that neighboring trajectories are not closed ; they spiral either towards
or away from the limit cycle.
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If all neighboring trajectories approach the limit cycle, we say the limit cycle is stable or attracting. Otherwise the limit cycle is
unstable or in exceptional cases, half-stable.

2.5 Bifurcations

A qualitative change in the behavior of a system upon a parameter variation is called bifurcation. Examples include changes in
the number or stability of fixed points, closed orbits, or saddle connection as a parameter is varied.

Saddle-Node Bifurcation

The saddle-node bifurcation is the basic mechanism by which fixed points are created and destroyed. As a parameter is varied,
two fixed points move toward each other, collide, and mutually annihilate.

The prototype example of a saddle-node bifurcation is given by the first order system;

ẋ = r+ x2

where r is a parameter.

Figure 2.5.1

r < 0, there are two fixed, one stable and one unstable. When r = 0, the fixed points coalesce into a half-stable fixed point at
x∗ = 0. For r > 0 no fixed point present in the system. In this example, a bifurcation occurred at r = 0, since the vector field for
r < 0 and r > 0 are qualitatively different.

Figure 2.5.2

Figure 2.5.2 is bifurcation diagram for the saddle-node bifurcation.

For two-dimensional system, consider the following prototypical example;
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ẋ = µ− x2

ẏ =−y

Figure 5.2.3

For µ > 0, there are two fixed points, as stable at (x∗,y∗) = (
√

µ,0) and a saddle at (−√µ,0). As µ decrease, the saddle
and node approach each other, then collide when µ = 0 and finally disappear when µ < 0.

Hopf Bifurcation

bifurcation involving the change in the number or stability of a periodic solution, or limit cycle, is a periodic bifurcation. A
Hopf bifurcation is a periodic bifurcation in which a new limit cycle is born from a stationary solution.
Suppose a two -dimensional system has a stable fixed point. There are two ways to for stable fixed point to lose stability. If the
fixed point is stable, the eigenvalues λ1,λ2 must both lies in the left half-plane Re λ ,0.

Figure 5.2.4
Then there are two possible pictures; either eigenvalues are both real and negative (Figure 5.2.4 a) or they are complex
conjugates (Figure 5.2.4 b). To destabilize the fixed point, we nee one or both of the eigenvalues to cross into the right half-plain
as µ varies. :

* 1 real eigenvalue passes through λ = 0 (zero-eigenvalue bifurcations), This is the saddle-node which we discussed above.
* 2 complex conjugate eigenvalues cross into right half plane; Hopf Bifurcation

Supercritical Hopf Bifurcation occurs if exponentially damped oscillation changes to growth at µc, and becomes small limit
cycle oscillation about formerly steady state. In terms of the flow in phase space, a Supercritical Hopf bifurcation occurs when
stable spiral changes into unstable spiral surrounded by small limit cycle.

Consider the following simple example;

ṙ = µr− r3

θ̇ = ω +br2
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where µ controls stability at origin,ω gives frequency of infinitismal oscillations, b determines dependence of frequency on
larger amplitude.

Eigenvalues λ = µ±ω cross imaginary axis from left to right.

Figure 2.5.5

Rules of Thumb for Supercritical Hopf Bifurcations;

* Size of limit cycle grows continuously from zero, and increases proportionally to
√

µ−µC close to µc.
* Frequency of limit cycle ≈ Im λ +O(µ−µc) near µc
* Limit cycle is elliptical. Its shape becomes distorted as µ moves away from µc.
* Eigenvalues follow curvy path (see figure).

Figure 2.5.6

3. Uncoupled System [2]
3.1 Introduction

One of the important two-dimensional phase space is the torus and has the natural phase space for system of the form

θ̇1 = f1(θ1,θ2)

θ̇2 = f2(θ1,θ2)

where f1 and f2 are periodic in both arguments. For instance, simple model of coupled oscillators is given by

θ̇1 = ω1−C1 cos2π(θ2−θ1)

θ̇2 = ω2 +C2 cos2π(θ1−θ2) (1)

where θ1, θ2 are the phases of the oscillators, ω1,ω2 > 0 are their natural frequencies and C1,C2 > 0 are coupling constants.

The trivial case of uncoupled oscillators, where C1,C2 = 0 gives some interesting phenomenon. Then equations (1) reduces to

θ̇1 = ω1
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θ̇2 = ω2

Then the corresponding trajectories are straight lines with constant slope dθ2/dθ1 = ω2/ω1. Depending on whether slop is
a rational or an irrational one there are two qualitatively different cases.

Case 1: A rational slope

Then ω1/ω2 = p / q, where p, q are some integers with no common factors. If we regard θ1 and θ2 as points on the circle,
θ1 completes p revolutions in the same time that θ2 completes q revolution. Therefore, in this case all trajectories are closed
orbits on the torus.

For example, if p= 3, q = 2 Figure 3.1.1 shows the phase portrait.

Figure 3.3.1

Case 2: An irrational slope

Then every trajectory winds around endlessly on the tours. They are never intersection itself or never quite closing. This
flow is called quasiperiodic.

Figure 3.3.2

How can we be sure the trajectories never close? Any closed trajectory necessarily makes an integer number of revolution in
both θ1 and θ2; hence the slope would have to be rational, contrary to assumption. Further, when the slop is irrational, each
trajectory is dense on the torus, which means each trajectory comes arbitrarily close to any given point on the torus. However
the trajectory does not pass through each point; it just comes arbitrarily close. Quasiperiodicity is significant, as it is a new type
of long-term behavior, which only occurs on the torus. Strogatz [2]
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4. PHASE Model
4.1 Introduction

Strogatz discussed main findings of free-run experiments of Circadian rhythm in section 2. Experimental Data [1]. He
emphasized that there were apparent regularities which were consistent across internally desynchronized subjects;

1). Long sleep episode begin near high temperature and shorter sleep episodes begin near the temperature through.
2). Almost all awakening occur on the rising limb of the temperature cycle and practically none occurs in the quarter-cycle
before the temperature minimum.
3). Many sleep episodes begin at one of two peak phases in the circadian cycle-near the temperature maximum.

Further he reviewed many other regularities which were presented throughout the world literature on internally dsynchro-
nized subjects. In this section, we revisit a simple model, Strogatz proposed, which can illuminate this empirical relationships.
In particular, the relation between sleep length and circadian phase of sleep onsent is discussed in section 4.5.

Strogatz [1] used the equation (1) to model the interaction between human-circadian rhythms and the sleep-wake cycle.
This model is based on two pacemakers; Circadian rhythm of body temperature and the sleep-wake cycle. These pacemakers
are assumed to be coupled. Each accelerates or slows the other depending only on their mutual phase relation and this model
ignores such variables as amplitude, where observes only phase.

This simple mathematical model uses the assumptions that its component oscillators have circular state spaces and more
importantly they only interact through phase differences.

4.2 Model structure [1]

The structure of the PHASE model is summarized in Fig.4.2.1 [1]. θ1 and θ2 are the phases of the two oscillators which are real
numbers and we considered them as point on the circle of unit circumference. The governing equations are

θ̇1 = ω1−C1 cos2π(θ2−θ1) (1a)

θ̇2 = ω2−C2 cos2π(θ1−θ2) (1b)

where ω1,ω2 are intrinsic frequencies and C1,C2 are coupling strengths.

The overdot signifies time differentiation. All the parameters are taken to be non-negative. The chosen form of the coupling is
such that the first oscillator slows down and the second speed up when they are in phase. This property is suggested by the
observed modulations of sleep-wake cycle lengths as the activity and temperature rhythms cross through each other during
internal desynchronization.

Figure 4.2.1

We adopt the conventions that oscillator #1 drives the circadian temperature rhythm and oscillator #2 drives the sleep-wake
cycle. Sleep is defined to occupy some fraction F of theθ2 circle:

θ2 = 0 at sleep onset
θ2 = F at wake-up

(2)
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Here 0 6 F 6, and typically F v 1
3 , since people sleep about a third of the time. Since sleep onset during internal synchrony

occurs near low temperature, we take θ1 = 0 as circadian phase 0, the minimum of the endogenous temperature cycle.

4.3 Synchrony [1]

To study the synchronization and desynchronization of the constituent oscillators, consider the phase difference.

ψ = θ1−θ2 (3)

Subtracting the equation in (1) we see

ψ̇ = Ω−C cos2πψ (4)

where

Ω = ω1−ω2 (5)

and

C =C1 +C2 > 0 (6)

Here Ω is the difference of the intrinsic frequencies of the two oscillators and C is the total coupling in the system. Synchrony
is enforce when the total coupling C is larger than the magnitude |Ω| of the frequency difference, so the ψ̇ = 0 has a solution.
Otherwise the phase-difference ψ continues to grow as one oscillator periodically over takes the other. This desynchronized
case will be considered in Sect.4.4. For not consider the synchronized case, i.e., assume

K =

∣∣∣∣CΩ
∣∣∣∣> 1 (7)

Then the internally synchronized phase relation ψ∗ is obtained by solving (4) for ψ̇ = 0 ;

ψ
∗ =± 1

2π
cos−1

(
Ω

C

)
(8)

These are two solution implicit in (8); the stable one is that for which dψ̇/dψ < 0.Here the range of cos−1 is taken as [0,π], so

ψ
∗ = (−1/2π)cos−1

(
Ω

C

)
(9)

is the stable solution.

Using (8) we can also find the ”compromise” frequency ω∗ adopted by the synchronized system. During internal synchrony (1)
becomes

θ̇1 = ω1−C1

(
Ω

C

)
(10)

θ̇2 = ω2−C2

(
Ω

C

)
(11)

Since θ̇1 = θ̇2 = ω∗ during synchrony, either of these two expressions simplifies to

ω
∗ =

C1ω2 +C2ω1

C1 +C2
(12)

This frequency differs from the intrinsic frequencies ω1 and ω2 by amounts ∆ω1 and ∆ω2:

∆ω1 = ω
∗−ω1 =−C1Ω/C (13)
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and

∆ω2 = ω
∗−ω2 =C2Ω/C (14)

Note that during synchrony the oscillators’ frequencies are shifted from their intrinsic values in proportion to the coupling
strengths:∣∣∣∣∆ω2

∆ω2

∣∣∣∣= ∣∣∣∣C1

C2

∣∣∣∣ (15)

Estimates of the absolute magnitudes of the parameters C1,C2, for human subjects are as follows;

4.3.1 Parameter estimates for human subject

The earlier Eqs.(8- 14) may be used to estimate the coupling strengths C1,C2 for typical human subjects. When internal
synchrony is lost, the period of the sleep-wake cycle lengthens by much more than that of the temperature cycle shortens.
Hence we expect

C1 <<C2 (16)

Since Ω =C at the onset of desynchrony, and C =C1 +C2 C2, the frequency difference Ω provides an estimate of C2:

C2 ∼ frequency difference ω observed at onset of desynchrony (17)

Choosing units where ω = 1, a typical value of ω would be

Ω∼ 1/6∼= 0.16 ∼ 6 day beat period (18)

Hence

C2 ∼ 0.16 (19)

From (13), (14), (16), and (18)

∆ω2 ∼ 0.16 (20)

To obtain C1, we recall Wever’s [1] result that after desynchrony, the temperature cycle shortens by ∼ 0.7 h. for a synchronized
period of 25.5h, this corresponds to

ω
∗ = 24.8/25.5∼= 0.97 (21)

Since

∆ω1 = ω∗−ω1
∼ 0.97−1.0

∼−0.03 (22)

We find from (13) and (14) that

C1 = |C2∆ω1/∆ω2| ∼ 0.03 (23)

|C1/C2| ∼ |0.03/0.16| ∼ 1/5 (24)
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4.4 Desynchrony

Equation (4) corresponds to desynchrony when K < 1, i.e, when C < |Ω|. The phase difference ψ between the oscillators always
increases, sometimes slowly and sometimes rapidly, exhibiting what circadian biologist call ”internal relative coordination” [1].
The oscillators periodically move through a full cycle of mutual phase relations, with a ”beat” frequency β , obtained as follows.
From (4) the time required for ψ to change from 0 to 1 is 1/β , given by

1/β =
∫ 1/β

0
dt =

∫ 1

0

dψ

Ω−C cos2π
(25)

= (Ω2−C2)1/2 (26)

(For a derivation of the beat frequency, see subsection 4.4.1 Exact solution for θ1andθ2) Hence the beat frequency β satisfies

β = (Ω2−C2)1/2 (27)

= Ω

(
1− C2

Ω2

)−1/2

(28)

Two special cases:

(i) For C = 0, the beat frequency reduces to β = Ω = ω1−ω2, the noninterractive beat frequency.
(ii) As C→ |Ω| ,β → 0 according to a square root dependence (28). Thus the tendency to synchronize grows rapidly as C

approaches the critical coupling.

An analytically convenient special case of the model is that in which C1 = 0, i.e. there is no feedback onto the circadian
pacemaker. As discussed in the subsection 4.3.1 Parameter estimates for human subject, this is a reasonable first approximation,
and it will be assumed in what follows.

Let the arbitrary zero of time be chosen such that θ1(0) = 0. Then scaling time such that

ω1 = 1 (29)

We obtain

θ1(t) = t (30)

As shown in subsection 4.4.1, Equation (4) may be solved exactly to yield a complicated (but monotonic and hence invertible)
function ψ(t). Rather than writing this function explicitly here, it will be referred to simply as ψ(t).

Having solved for θ1(t) and ψ(t), we obtain θ2(t):

θ2(t) = θ1(t)−ψ(t) (31)

= t−ψ(t) (32)

4.4.1 Exact solution for θ1 and θ2

We consider the system

θ̇1 = 1 (33)

θ̇2 = ω +C cos2π(θ1−θ2) (34)
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This system subsumes Eq (1) of Sect. 4.2, for the case C1 = 0. Time is scaled so the ω1 = 1; then ω2 becomes ω and C2
becomes C in this new notation.
Let

ψ = θ1−θ2 (35)

Then

ψ̇ = 1−ω−C cos2πψ (36)

= Ω−C cos2πψ (37)

where

Ω = 1−ω (38)

Rescale time again: Set

T = Ωt (39)

and let

ψ
′ = dψ/dT (40)

Then

ψ
′ = 1− k cos2πψ (41)

where

k =C/Ω (42)

Here k represents a dimensionless constant; desynchrony occurs when

K < 1 (43)

Equation (41) can be solved by separation of variables, followed by integration. Using the substitution we obtain

T + constant =
∫ dψ

1− k cos2πψ
(44)

=

(
1

π(1+ k)b

)
tan−1(x/b) (45)

where

b2 = (1− k)/(1+ k) (46)

Equation (45) may be solved for x and then for ψ to yield

ψ(t) = (1/π) tan−1 u(t) (47)

where

u(t) = b tan(πβ t +C0) (48)

β = Ω(1− k2)1/2 is the beat frequency (49)
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C0 = tan−1((1/b) tanπψ0) (50)

ψ0 = ψ(t = 0) is the initial condition (51)

b2 = (1− k)/(1+ k) (52)

k =C/(1−ω)is the dimensionless coupling (53)

The Eqs. (47) - (53) solve the equation given by (35) for the desynchronized case assumed in (43). Then θ1 and θ2 are easily
solved for, as shown in Eqs.(30),(32) of Sect.4.4

Monotonicity of θ2(t)

Around the discussion of Fig.4.5, it was stated that θ2(t) is monotonic function of t, for certain reasonable choices of
parameters. All that is required in fact is C < |Ω| (the condition characterizing desynchrony) and ω2 > 1/2 (activity rhythm
period is less than ∼ 50h). The monotonicity of θ2 is established as follows:

ω2 > 1/2⇒ ω2 > 1−ω2

⇒ ω2 > Ω (from (30) and (5))
⇒ ω2 +Ωcos2πψ > 0 for all ψ

⇒ ω2 +C2 cos2πψ > 0 , Since C2 6C 6 |Ω|
⇒ θ̇2 > 0 (from (1))
⇒ θ2(t) is monotone in t, as required.

4.5 Model prediction of an empirical relationship

The model’s prediction of various empirical relations give only implicit solution. For example, consider the model’s prediction
of the dependence of the duration ρ of the sleep episode on the phase φs of the circadian temperature cycle at sleep on set. The
experimental findings [1 ] shows that sleep episodes beginning near the temperature trough tend to be short (∼ 7h), while those
beginning near the temperature maximum are long (∼ 15h). The robustness of the φs : ρ relationship came as a surprise, and
has been discussed extensively in the literature [1]. Many theoretician have used it as a benchmark to test their models [1].
Hence it is of interest to derive the form of the φs;ρ relationship predicted by the PHASE model.

According to the convention established in (2), sleep duration ρ is given by the time required for θ2 to move from 0 to F.
The circadian phase φs of sleep onset is given by θ1 when θ2 = 0. To calculate the φs : ρ relationship it is most convenient to
choose a new origin of time, with t = 0 at sleep onset, i.e.

θ2(0) = 0 (54)

θ1(0) = φs (55)

ψ(0) = θ1(0)−θ2(0) = φs (56)

Now to find the time at which wake-up occurs, we seek ρ such that

θ2(ρ) = F (57)
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Figure 4.5

θ1(ρ) = φs +ρ (58)

ψ(ρ) = φs +ρ−F (59)

Together (56) and (59) constitute an implicit set of equations for ρ , as a function of φs and F. Because of the trigonometric
form of ψ ( see Eqs.(47), (48) of section 4.4.1), the solution for ρ requires graphical or numerical techniques.

One such graphical method is indicated in Fig. AS shown in Sect. 4.4 and yield the curves θ2(t) and ψ(t). Initial condition
wereθ1(0) = θ2(0) = 0, and the integration continued until all mutual phase relations ψ between 0 and 1 had been attained.
Thus all possible circadian phases of sleep onset are attained, since φs = ψ when θ2 = 0. To find ρ(φs), we follow a multi-step
procedure (Fig ):

(i) Choose φs, the phase of sleep onset.
(ii) Find ts such that ψ(ts) = φs. This is always possible since ψ is invertible.
(iii) Reading ts as the time of sleep onset, find ( the first) ts such that θ2(tw) = θ2(ts)+F .
(iv) Thus tw represents the time of wake-up and so ρ = tw− ts. As Fig. 5b reveals, long sleeps arise when the phase of mid-sleep
falls near the inflection point of theta2(t). Thus the longest sleeps are predicted to begin in the first half of the circadian cycle
(Fig. 5C), as observed in real data []. Figure 5 c also mimics the sheared sinusoidal shape of the observed φs : ρ relation
[(Fig.3a)].

The steps of the graphical construction can be summarized in term of ψ−1 and θ
−1
2 , the inverse functions to ψ(t) and θ2(t),

respectively.
For notational simplicity, let

g = ψ
−1 and h = θ

−1
2 (60)

From step (ii) above,

g(φs) = ts (61)
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Thus

ρ(φs) = h(θ2(g(φs))+F)−g(φs) (62)

Equation (62) is the first instance of an exact expression for the φs : ρ relation derived from a mathematical model of the
sleep-wake cycle.

5. Oscillator Death and bifurcation on a torus [3]

Since about 1960 mathematical biologists have been studying simplified model of coupled oscillators. Oscillator Death in
System of coupled Neural Oscillators by Ermentrout and Kopel is one of the interesting models. In a paper on system of neural
oscillators, Eremntrout and kople illustrated the notion of ”Oscillator death” with the following model:

θ̇1 = ω1 + sinθ1 cosθ2,
θ̇2 = ω2 + sinθ2 cosθ1

Where ω1,ω2 ≥ 0

In this section we classify all the different behavior that the solution to the above equation have as the parameters vary in
the positive quadrant of [ω1,ω2] - plane and describe each bifurcation [4].

Consider the equations;

θ̇1 = ω1 + sinθ1 cosθ2 (63)

θ̇2 = ω2 + sinθ2 cosθ1 (64)

Where ω1,ω2 ≥ 0

Let φ = θ1 +θ2 and ψ = θ1−θ2 Then using standard trigonometric formulas we can show that the system has following
equivalent forms;

φ̇ = ω1 +ω2 + sinφ and ψ̇ = ω1−ω2 + sinψ (65)

Hence the system is uncoupled in these variables. It follows that

1. Case ω1 > ω2 +1 Oscillators ”independent”, The solution are quasi-periodic, with two periods.
Since ω1 +ω2 > ω1−ω2 > 1, from 5.1 Notes

φ = µ1t +Φ and φ = µ2t +ψ where µ1 > µ > 0 (66)

Φ is periodic of period T1 =
2π

µ1
and Ψ is periodic of period T2 =

2π

µ2

There is neither phase locking, nor oscillator death. Each oscillator oscillates independently, albeit with greatly modified
phases:

θ1 =
µ1 +µ2

2
t +

1
2
(Φ+Ψ) and θ2 =

µ1−µ2

2
t =

1
2
(Φ−Ψ) (67)

instead of the uncoupled phases θ j = ω j(t− t0 j). The frequencies are not constant either, that is:

θ̇1 =
µ1 +µ2

2
+

1
2
(Φ̇+ Ψ̇) and θ̇2 =

µ1−µ2

2
+

1
2
+(Φ̇− Ψ̇) (68)

Finally, not that the solution are quasi-periodic, with period T1 and T2. When checking periodicity, or quasi-periodicity, it is
important to keep in mind that θ1 and θ2 are angles, so that behavior of the form θ j = µt corresponds to a period T = 2π /µ .
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2. Case ω1 = ω2 +1. Bifurcation into (out of) phase locking. Φ has the same form as in (63), but the equation for Ψ in (65)
has a semi-stable critical point Ψ = π/2+2nπ . Phase locking is semi-stable: small perturbation can take the system out of
phase lock. Then the phase Ψ difference increases by 2π , and phase locking occurs again.

Consider the situation in item 1 as ω1−ω2 decrease to 1. Then µ2 decrease to 0 and T2 increase to ∞. Hence ψ becomes
very slowly varying - a constant for ”short enough” time periods, and the oscillator’s behavior approximates that of a phase
locked one, with a common frequency.

Consider the situation in item 3 as ω1−ω2 increase to 1. Then ψu and ψs coalesce into ψu = ψs = π/2 and the behavior
limits to the one here.

3. Case |ω2 +1|< ω1 < ω2 +1. Phase lock is a global attractor. Since |ω1−ω2|< 1 , the equation for ψ in (65) has two
critical points, one unstable (call it ψu) and another a stable global attractor (call it ψs). Thus a constant phase difference
ψ = ψs is a global attractor. On the other hand ω1 +ω2 > 1 and ”5.1 Notes” yields

φ = µ1t +Φ where µ1 > 0 and Φ is periodic of period T1 =
2π

µ1
(69)

Thus, the attracting solution is θ j =
1
2

µ1t +
1
2
(Φ− (−1) j

ψs) (70)

So that the tow oscillators run with a common (variable) frequency ω = 1
2 µ1 +

1
2 Φ̇. This solution is limit cycle, with period

T −1.

4. Case ω1 +ω2 = 1. Bifurcation from/to oscillator death to /from phase locking. The equation for ψ in (65) has ”the
same” two critical points, ψu and ψs in item 3, while the equation for φ has a single, semi-stable, critical points π/2+2nπ .
The system then approaches, as t→ ∞, the critical point φ = π/2+2nπ and ψ = ψs. But this point is semi-stable, so a small
perturbation can take φ out of equilibrium. Then φ increases by 2π , till it reaches the critical point again (n→ n+1).

The case in item 5 approaches the behavior hear as ω1 +ω2 decrease to 0 and T1 increases to ∞. Hence φ becomes very
slowly varying - a constant for ”short enough” time periods. The case in item 5 approaches the behavior here as ω1 +ω2
increase to 1, because then φu and φs coalesce into π/2+2nπ .

5. Case ω1 +ω2 < 1. Oscillator death. Since the ω j are positive, |ω1−ω2|< 1. Thus both equation in (65) have critical
points, one unstable in each (φu and ψu), and another a stable global attractor in each (φs and ψs). Thus the system in (63) and
(64) has global attractor ( a stable node), given by

(θ1,θ2) =
1
2
(φs +ψs,φs−ψs) (71)

Note that 1
2 (φs +ψu,φs−ψu) and 1

2 (φu +ψs,φu−ψs) are saddles, while 1
2 (φu +ψu,φu−ψu) is an unstable node.

6. Case ω2 = ω1 +1. Bifurcation into (out of ) phase locking. This case it the same as the one in item 2, via the system
symmetry θ1↔ θ2.

7. Case ω2 > ω1 +1. Oscillators ”independent”, The solutions are quasi-periodic, with two periods. This is the same
as the one in item2, via the system symmetery θ1↔ θ2.
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Figure 5.1: Oscillator death and bifurcation in the plane. Regions in the positive quadrant of the [ ω1,ω2] - plane
corresponding to different behaviors (63) and (64) can have. The boundaries between the regions correspond to bifurcations.
These are;

2, where ω1−ω2 = 1
4, where ω1 +ω2 = 1; and
6, where ω2−ω1 = 1

5.1 Notes for Section 5

Consider the equation

φ̇ = 1−K sinφ , where 0 < K < 1 and

φ(t0) = 0

dφ

1−K sinφ
=
∫ t

t0
dt

∫
φ(t)

0

dφ

1−K sinφ
= t− t0

Let F(x) = f (x)+ax

F(x) =
∫ x

0

dφ

1−K sinφ
=
∫ x

0
(

dφ

1−K sinφ
−adφ)+ax

where a =
1

2π

∫ 2π

0

dφ

1−K sinφ
; µ =

1
a
(< 1)

f (2π) = f (0) = 0 , thus f is 2π periodic,

F is invertible and

F−1(y) =
1
a

y+Φ(
1
a

y)
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Where Φ is 2π periodic , since

F(2π) = f (2π)+2πa = 2πa

Therefore,

F−1(2πa) = 2π

φ(2π) = F−1(2πa)−2π = 0

Thus,

φ(t) = µ(t− t0)+Φ(µ(t− t0))

φ(t) = µt +φ(µt)

Note that sin(φ∗(t)) is periodic in t, of period T = 2π

µ

M = average(sinφ)

M =
1
T

∫ T

0
sin(φ∗(t))dt =

1
T

∫ 2π

0

sinφ

1−K sinφ
dφ

=
µ

2π

[
1
k

∫ 2π

0

K sinφ −1
1−K sinφ

+
1
K

∫ 2π

0

1
1−K sinφ

]
=

µ

2π

[
− 2π

K
+

2πa
K

]
=

µ

K

(
1
µ
−1
)
=

1−µ

K

Define Φ(µt) =
∫ t

0(sin(φ∗(s))−M)ds

=
∫ t

0
sin(φ∗(s))ds−Mt

∣∣∣∣ substitution φ = φ∗(s)

=
∫

φ∗(t)

0

sinφ

1−K sinφ
dφ − 1−µ

K
t

=
∫

φ∗(t)

0

(
− 1

K
+

1
K

1
1−K sinφ

)
dφ − 1−µ

K
t

=− 1
K

φ∗(t)+
1
K

∫
φ∗(t)

0

dφ

1−Ksinφ
− 1−µ

K
t

=− 1
K

[
µt +φ(µt)

]
=

1
K

t− 1
K

t +
µ

K
t

=− 1
K

φ(µt)

Thus,

φ∗(t) = µt−KΦ(µt)

Thus,

Φ(µt) =
∫ t

0

(
sin(µs−KΦ(µs))−M

)
ds
∣∣∣∣ d
dt
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µΦ
′(µt) = sin(µt−KΦ(µt))−M

µΦ
′ = sin(µt)cos(KΦ)− cos(µt)sin(KΦ)−M

Note that a = 1+ K2

2 +O(K4) ,

µ = 1
a = 1− k2

2 +O(K4)

Thus,(
1− k2

2
+O(K4)

)
Φ
′ = sin(µt)

(
1+O(K2)

)
− cos(µt)

(
K +O(K3))− 1

2
K +O(K3)

Φ
′ = sin(µt)+O(K)

Therefore,

Φ = 1− cos(µt)+O(K) and

φ∗ = µt−K(cos(µt))+O(K2)
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