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Abstract

One of the earliest attempts at public key cryptography used what
are now called knapsacks. Based on the subset sum problem, knap-
sack cryptosystems have consistently been shown vulnerable to attack
by lattice basis reduction. This thesis introduces the Merkle–Hellman
and Chor–Rivest knapsack cryptosystems, lattices, and the LLL lat-
tice basis reduction algorithm.



1 Introduction

Public key cryptography (PKC) involves the receiving party of a secure com-
munication keeping an unpublished private key, which will be used to easily
decrypt a secure message sent to them by a sender, who encrypts their mes-
sage using the receiver’s published public key. From a security standpoint,
this requires two properties to be true for a cryptosystem to be reliably se-
cure: First, the private key must not be easily recovered from the public in-
formation, or an eavesdropper will be able to decrypt the message as though
they are authorized; and second, the plaintext must be difficult to retrieve
using only a ciphertext and the public key. The second aspect is particularly
interesting because a ciphertext should additionally be easy to compute for
the sender, or the cryptosystem will be too cumbersome and impractical for
widespread use. To rephrase the challenge of PKC, a ciphertext must be easy
for the sender to build and easy for the receiver to decrypt, while remaining
difficult to disassemble by an eavesdropper who knows all of the ciphertext’s
possible building blocks.

One type of PKC cryptosystem is built upon the subset sum problem.
These knapsack cryptosystems consist of a private set generated with some
mathematical relationship amongst the elements in order to facilitate “easy”
decryption by the authorized receiver. To impede decryption from an eaves-
dropper, operations are performed on the elements of the set to make them
appear random. Because encryption is generally easy for the sender, who
performs elementary operations to combine a subset of elements, an eaves-
dropper without the private decryption data has 2n possible combinations to
consider, where n is the (usually large) number of elements in the knapsack.

In this paper, we consider two such knapsack cryptosystems. First, the
Merkle–Hellman cryptosystem, based on super-increasing sets and modular
arithmetic, is introduced. Then we discuss the more secure Chor–Rivest
cryptosystem, which is based on finite field arithmetic. Our goal is show the
vulnerabilities of these systems by identifying attacks to recover a plaintext
message from only the public information (the public knapsack and cipher-
text).

The attack vector that we use is lattice basis reduction. After presenting
background information on lattices, we discuss the Lenstra–Lenstra–Lovász
(LLL) algorithm for lattice basis reduction. Using that algorithm, it is “al-
most always” easy to recover the plaintext from a lattice constructed of the
public information in the Merkle–Hellman cryptosystem. Because of the in-
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creased security of the Chor–Rivest cryptosystem, such an attack against
that cryptosystem is not as straightforward. We end with a discussion of the
lattice reduction-based attacks against the Chor–Rivest system.

2 Knapsack Schemes

Knapsack cryptographic problems involve an ordered set of n numbers and
a message encoded as n bits, breaking up the message into several parts and
padding as necessary. The ciphertext is generated by selecting elements of the
set based on the message bits and combining them through a mathematical
operation (usually addition). To be secure, the set must be considerably
large, so that an eavesdropper attempting to crack the ciphertext by brute-
force will have a tremendous amount of computational time resulting from
the 2n possible solutions. To be a realistic cryptographic system, however,
the intended recipient must be able to decrypt the message in a relatively
short amount of time.

To accommodate this requirement, knapsack cryptosystems include so-
called “trapdoors” as a part of their private keys. A trapdoor, in this context,
is usually a mathematical relationship amongst the elements of the knapsack
which ensures that every ciphertext has a unique and easy-to-perform de-
cryption. To provide security against an eavesdropper, this trapdoor must
be concealed through a private randomization function performed on the
knapsack prior to its publishing. The function usually includes algebraic
operations which sufficiently alter the elements, causing their apparent re-
lationship to be obscured. A knapsack cryptosystem which implements this
type of authorized decryption method is called a “trapdoor knapsack.”

Because the trapdoor facilitates the decryption of a ciphertext, and gen-
erally involves less than 2n possible solutions, the security of the trapdoor
(and its concealment) becomes paramount in determining the security of the
specific knapsack cryptosystem implementation. Likewise, many attacks on
knapsack cryptosystems revolve around weaknesses in their trapdoors. To
gain a practical understanding of trapdoor knapsack cryptosystems, a de-
scription of two such systems follow.
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2.1 Merkle–Hellman Knapsack Cryptosystem

The Merkle–Hellman knapsack cryptosystem [6] was one of the earliest knap-
sack cryptosystems. It relies on a super-increasing set to form a knapsack
with a trapdoor, and modular arithmetic to conceal the trapdoor. We will
first examine the initialization and encryption/decryption algorithms of this
system, followed by a brief practical example of the system in use.

2.1.1 Key Generation

We choose a knapsack vector a′ = 〈a′1, a′2, . . . , a′n〉 generated in a way such
that for all i,

a′i >
i−1∑
j=1

a′j, (1)

and two large coprime numbers m and w, where

m >
∑

a′i. (2)

Defining “mod” to be the least positive residue, we then transform a′

into the trapdoor vector a by performing the following computation on each
element

ai = w · a′i mod m, (3)

and publish the resulting “random” vector a as the public key. The remaining
data (m, w, and a′) is kept as the private key.

2.1.2 Encryption and Decryption

With a message encoded as a bit string x, the encrypted message is computed:

S =
∑

xiai (4)

To decrypt, we must calculate w−1 (mod m), which exists by design, and
then perform the following computation:

S ′ = w−1 · S mod m (5)

= w−1
∑

xiai mod m (6)

= w−1
∑

xi · (wa′i) mod m (7)

=
∑

xi · a′i mod m (8)
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To find x, we can use a greedy algorithm such that we set xn = 1 if and
only if S ′ > a′n, and for i = n− 1, n− 2, . . . , 1, we set xi = 1 if and only if

S ′ −
n∑

j=i+1

xj · a′j ≥ a′i. (9)

2.1.3 Example

To clarify the nature of this system, a small example is given for a knapsack
with five elements. We choose

a′ = 〈171, 196, 457, 1191, 2410〉
m = 8443

w = 2550 (so w−1 = 3950),

and keep that information private. We then calculate

a = 〈5457, 1663, 216, 6013, 7439〉

and publish a as the public knapsack.
A user wishing to send x = 〈0, 1, 0, 1, 1〉 will send

S = 1663 + 6013 + 7439 = 15115.

To obtain x from S, we compute

S ′ = w−1 · S mod m

= 3950 · 15115 mod 8443

= 3797.

Because S ′ > a′5 (3797 > 2410), we set x5 = 1. Using (9), we find that
x4 = 1, x3 = 0, x2 = 1, and x1 = 0, which is the initial message x.

If the message is intercepted, the eavesdropper will only have the infor-
mation made public. They will have to find the combination of elements in
a = 〈5457, 1663, 216, 6013, 7439〉 which, when added together, result in the
sum S = 15115. Although that challenge is trivial in this small example, it
could require up to 25 possible calculations by brute-force.
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2.2 Chor–Rivest

Designed to improve the security of knapsack cryptosystems, the Chor–Rivest
knapsack cryptosystem [2] utilizes finite field arithmetic during the construc-
tion phase. It also uses the work of Bose and Chowla [1] to restrict the
hamming weight of a secret message to a size h (large messages can be split
into a series of small messages if necessary). This restriction plays an impor-
tant role in the cryptosystem’s construction and trapdoor generation.

2.2.1 Key Generation

1. Pick a prime power p, and an integer h ≤ p such that discrete log-
arithms in GF (ph) can be efficiently computed. To resist an attack
by brute-force, typical magnitudes for these values are p ≈ 200 and
h ≈ 25.

2. Pick a random t ∈ GF (ph) that is of algebraic degree h over GF (p).
This is done by finding f(t), a random irreducible monic polynomial of
degree h inGF (p)[t], and representingGF (ph) arithmetic byGF (p)[t]/〈f(t)〉.
This enables every element ofGF (ph) to be written uniquely in the form
c0 + c1t+ c2t

2 + · · ·+ cn−1t
n−1, ci ∈ GF (p).

3. Pick a multiplicative generator g ∈ GF (ph) of GF (ph) at “random” by
picking a random r ∈ GF (ph) until one which satisfies r(p

h−1)/s 6= 1
(for all prime factors s of ph − 1) is found.

4. Compute ai = logg(t + αi) for all αi ∈ GF (p). This forces gai to be a
polynomial of the the form gai = αi + 1t+ 0t2 + · · ·+ 0th−1, and since
g is a generator of GF (ph)×, we know that 0 < ai < ph.

5. Scramble the ai’s by randomly choosing a permutation
π : {0, 1, . . . , p− 1} → {0, 1, . . . , p− 1}, and set bi = aπ(i).

6. Pick 0 ≤ d ≤ ph− 2 at random. Set ci = bi + d. This adds noise to the
system.

The vector c = 〈c0, c1, . . . , cp−1〉, with p and h are published as the public
key. The values t, g, π−1, and d are kept as the private key.
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2.2.2 Encryption and Decryption

With a message encoded as a bit string x of length p and weight (the number
of 1’s) exactly h, the encrypted message is computed:

S =

p−1∑
i=0

xici (mod ph − 1). (10)

To decrypt, the following computations are performed:

1. Let r(t) = th mod f(t), a polynomial of degree ≤ h − 1. This is com-
puted once during the system generation.

2. Compute S ′ = S − hd (mod ph − 1).

3. Compute q(t) = gS
′
mod f(t), a polynomial of degree h − 1 in the

formal variable t.

4. Add th − r(t) to q(t) to get s(t) = th + q(t) − r(t), a polynomial of
degree h in GF (p)[t].

5. This results in

s(t) = (t+ αi1) · (t+ αi2) · · · (t+ αih), (11)

where s(t) factors to linear terms over GF (p). By successive substitu-
tions, we find the h roots αij ’s using at most p substitutions. Applying
π−1 recovers the coordinates of the bits in the original x that are set
to 1.

2.2.3 Example

This example was generated using the Finite Fields Package in Mathematica.

Key Generation

1. We choose p = 11 and h = 5.

2. Using p and h, we can find f(t) = 1 + 7t2 + 4t3 + 8t5, which gives us a
t ∈ GF (115) of degree h.
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3. Now, we choose a multiplicative generator of GF (115), g = 10 + 7t2 +
5t3 + 8t4 + 2t5.

4. The computation ai = logg(t + αi) for all αi ∈ GF (11) yields a =
〈95254, 101623, 37272, 53340, 79700, 113016, 23201, 141170, 74278, 136906, 2586〉.

5. We choose a random permutation π = {6, 7, 9, 10, 0, 5, 1, 4, 3, 8, 2}, and
calculate its inverse, π−1 = {4, 6, 10, 8, 7, 5, 0, 1, 9, 2, 3}. Next, we rear-
range the elements of a as per the permutation, and store the result in
a vector b.

6. A random integer d = 79317 is chosen. By performing the computation
ci = bi + d, noise is added to the system.

7. We publish

c = 〈102518, 220487, 216223, 81903, 174571, 192333,

180940, 159017, 132657, 153595, 116589〉
p = 11

h = 5

as the public key.

8. We keep

f(t) = 1 + 7t2 + 4t3 + 8t5

g = 〈10, 7, 5, 8, 2〉
π−1 = {4, 6, 10, 8, 7, 5, 0, 1, 9, 2, 3}
d = 79317

as the private key.

Encryption We choose a message to encrypt, and perform (10) to find the
ciphertext S.

x = 〈1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0〉
S = 52382
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Decryption To obtain x from S, we compute:

r(t) = 4 + 6t2 + 5t3

S ′ = 138947

q(t) = 6 + 10t+ 3t2 + 9t3 + 8t4

s(t) = 2 + 10t− 3t2 + 4t3 + 8t4 + t5

And we find, through successive substitutions, the 5 roots αij ’s,
s(t) = (3+t)(4+t)(6+t)(7+t)(10+t) = 5040+5004t+1900t2+345t3+30t4+t5,
which can be written as 〈0, 0, 1, 1, 0, 1, 1, 0, 0, 1〉. By applying π−1, we get the
result 〈1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0〉 which is the initial message x.

3 What is a Lattice?

A property common to many knapsack cryptosystems is that encryption for
the message-sender is computationally easy, as many of these cryptosystems
require only the addition of numbers from a provided set, the receiver’s public
key. This property provides an underlying structure to knapsacks which can
be seen by mapping every element ai in the public key to a vector that points
in the ith direction. Under this system, an encrypted message S can also be
mapped to a vector which is the sum of the previously-defined vectors. A
system with this geometry is called a lattice, and the remainder of this section
will formally define the concept of a lattice, and introduce some properties
of lattices relevant to the cryptanalysis of knapsack cryptosystems.

Definition 1. The unit vector along a direction u, where u ∈ Rn \ {0}, has
length 1 and is defined by

û :=
u

‖u‖
.

Definition 2. The projection of a vector v onto a vector u is the u compo-
nent of v, and is defined by

proju(v) =
(v,u)

(u,u)
u,

where (, ) denotes the ordinary dot product.
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Definition 3. Let S ⊆ Rd, where d ≥ 1, be a non-empty finite set. The
lattice Λ generated by S is the set of integer linear combinations of the
elements in S,

Λ = Λ(S) := {m1u1 +m2u2 + · · ·+mkuk : k ≥ 1, ui ∈ S,mi ∈ Z}.

Definition 4. If S has the minimum cardinality among generating sets for
Λ, we call S a basis of Λ. The cardinality of a basis of Λ is the dimension,
dim Λ, of Λ.

In this paper, we will look only at the cases where a basis for Λ is a set
of k linearly independent vectors, and 1 ≤ k ≤ d, as is customary in these
applications. We then look at the ordered column vectors (u1, . . . , uk) and
define a matrix A:

A = [u1, . . . , uk] ∈ Rd×k

and by the same convention, the matrix A has rank k, and we address this
lattice as Λ(A) as opposed to Λ(S).

Definition 5. A square matrix U is unimodular if det U = ±1. The inverse
of a unimodular matrix is also unimodular.

Theorem 1. Let A,B ∈ Zk×k be two bases. Then Λ(A) = Λ(B) iff there
exists an integer unimodular matrix U such that A = BU .

A unimodular matrix U represents a unimodular transformation of lattice
bases, from A to AU .

Definition 6. The determinant of a lattice Λ is given by

det Λ :=
√

detATA

where A is a basis of Λ.

To clarify the implications of these terms, we will consider an example
consisting of the following set of matrices, which we will use to build lattices:

A =

 1 2 3
0 7 2
12 3 15

 , B =

14 11 24
20 11 −19
63 69 330

 , C =

 1 2 3
1 7 2
12 3 15


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In this case, Λ(A) = Λ(B) because there exists an integer matrix U with
detU = 1,

U =

1 3 27
2 1 −3
3 2 1

 ,
and B = AU . Additionally, by calculating the determinants of Λ(A) and
Λ(C), we can observe through their differing results (105 and 126, respec-
tively,) that these similar-looking matrices generate different lattices. The
idea of multiple generators for a given lattice, as seen with the A and B,
raises several questions, including the existence of a “best” lattice basis for
a particular application.

4 Lenstra–Lenstra–Lovász (LLL) Lattice Ba-

sis Reduction Algorithm

In the beginning of Section 3, we presented the idea that the elements of a
knapsack can be used to create a set of vectors that will generate a basis
of a lattice. By extension, any ciphertext generated from the knapsack can
be represented as a vector that is a combination of the knapsack elements’
vectors, making it an element in the lattice as well. Because the knapsack
and the ciphertext are made public, a possible attack on many knapsack
cryptosystems is lattice basis reduction: Given the described lattice, find the
vectors that make up the ciphertext.

In 1982, a paper published by A.K. Lenstra, H.W. Lenstra Jr., and L.
Lovász [5] described a computationally-efficient algorithm (LLL) for lattice
basis reduction. In the following subsections, I will describe and present that
algorithm, and provide an example of it in use on an elementary lattice.

4.1 Description

The LLL algorithm utilizes the information gathered by the Gram–Schmidt
process to create a reduced basis for the lattice. Recall that the Gram–
Schmidt process is used to create an orthonormal basis for a given set of
vectors. While we are looking for an orthogonal basis, we are specifically not
looking for an orthonormal basis, so the normalization method is removed
from the Gram–Schmidt process. Further, we cannot use the exact results
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from this modified Gram–Schmidt process because it is likely that those
results will be composed with non-integer coefficients of the initials vectors,
causing them to fall outside of the lattice.

Instead, the data from the Gram–Schmidt process is used to improve the
orthogonality of the source vectors while keeping them in the lattice. Specif-

ically, the Gram-Schmidt coefficient, µkl =
(bk,b

∗
l )

(b∗l ,b
∗
l )

, which evaluates the pro-

jection of a vector bk in the lattice onto the Gram–Schmidt-orthogonalized
vector b∗l , is used as a sensitivity indicator. If µ is too large (namely, if
it is greater than 1

2
,) then the orthogonality of bk in relation to bl can be

improved, so the following process similar to the orthogonalization routine
found in Gram-Schmidt is performed:

bk := bk − rbl. (12)

That equation, where r is the integer nearest to µkl, causes the updated bk

to improve its orthogonality to bl, while ensuring that bk remains in the
lattice.

The LLL algorithm includes the appropriate modifications for its differ-
ences from the Gram-Schmidt process, and is written in a computationally-
efficient (polynomial time) manner. The complete algorithm follows, in which
Bi = |b∗i |2 and (, ) refers to the ordinary dot product.

12



b∗i := bi;
µij := (bi, b

∗
j)/Bj;

b∗i := b∗i − µijb∗j ;

}
for j = 1, 2, . . . , i− 1;

Bi := (b∗i , b
∗
i );

 for i = 1, 2, . . . , n;

k := 2;
(1) perform (*) for l = k − 1;

if Bk < (3
4
− µ2

k,k−1)Bk−1, go to (2);
perform (*) for l = k − 2, k − 3, . . . , 1;
if k = n, terminate;
k := k + 1;
go to (1);

(2) µ := µk,k−1; B := Bk + µ2Bk−1; µk,k−1 := µBk−1/B;
Bk := Bk−1Bk/B; Bk−1 := B;(
bk−1
bk

)
:=

(
bk
bk−1

)
;(

µk−1j
µkj

)
:=

(
µkj
µk−1j

)
for j = 1, 2, . . . , k − 2(

µik−1
µik

)
:=

(
1 µkk−1
0 1

)(
0 1
1 −µ

)(
µik−1
µik

)
for i = k + 1, k + 2, . . . , n;

if k > 2, then k := k − 1;
go to (1).

(*) if |µkl| > 1
2
, then:

r := integer nearest to µkl; bk := bk − rbl;
µkj := µkj − rµlj for j = 1, 2, . . . , l − 1;
µkl := µkl − r

Output: Reduced lattice basis [b1, . . . , bn]

Figure 1: LLL lattice basis reduction algorithm

4.2 Example

Consider the following lattice constructed from the column vectors in A =
[b1,b2,b3]:

A =

1 −1 3
1 0 5
1 2 6


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During the initialization, we set b∗1 := b1 and calculate B1, thus:

A =

1 −1 3
1 0 5
1 2 6

 ,b∗1 =

1
1
1

 , B1 = 3

We then set b∗2 := b2 and subtract from b∗2 the projection of b∗2 onto b∗1:

A =

1 −1 3
1 0 5
1 2 6

 ,b∗1 =

1
1
1

 , B1 = 3,b∗2 =

−4
3

−1
3

5
3

 , B2 = 14
3

µ21 = 1
3

Next, b∗3 := b3 is introduced, and we subtract its projections onto b∗j for
j = 1, 2:

A =

1 −1 3
1 0 5
1 2 6

 ,b∗1 =

1
1
1

 , B1 = 3,b∗2 =

−4
3

−1
3

5
3

 , B2 = 14
3

µ21 = 1
3

,b∗3 =

−3
7

9
14

− 3
14

 , B3 = 9
14

µ31 = 14
3

µ32 = 13
14

Setting k := 2 concludes the initialization.
After one iteration of (1), the system goes unchanged and k is increased

to 3. In (*), we quickly see that the projection µ32 is beyond the sensitivity
value of 1

2
, so the “lattice orthogonalization” process is applied to b3. Because

Bk < (3
4
− µ2

k,k−1)Bk−1 is true, the swap of b2 and b3 outlined in (2) is
performed and k decremented, with the result:

A =

1 4 −1
1 5 0
1 4 2

 , A∗ =

1 −4
3
−3

7

1 −1
3

9
14

1 5
3
− 3

14

 , B1 = 3
B2 = 2

3

B3 = 9
2

,
µ21 = 13

3

µ31 = 1
3

µ32 = −1
2

, k = 2

This brings us back to (1) which leads to a test by (*) of the orthogonality of
b1 and b2. Because µ21 is greater than the sensitivity 1

2
, the orthogonality

process is applied. The Bk < (3
4
− µ2

k,k−1)Bk−1 test passes, so the swap
method is called while k is unchanged. The updated results are:

A =

0 1 −1
1 1 0
0 1 2

 , A∗ =

1 −4
3
−3

7

1 −1
3

9
14

1 5
3
− 3

14

 , B1 = 1
B2 = 2
B3 = 9

2

,
µ21 = 1
µ31 = 0
µ32 = 1

2

, k = 2

At the next iteration of (1), because µ21 is again greater than 1
2
, the orthogo-

nality process is applied to improve the orthogonality of b2 to b1. After this,
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the Bk < (3
4
− µ2

k,k−1)Bk−1 test fails, indicating that the two vectors have
sufficiently different lengths. The variable k is incremented, and the results
are updated:

A =

0 1 −1
1 0 0
0 1 2

 , A∗ =

1 −4
3
−3

7

1 −1
3

9
14

1 5
3
− 3

14

 , B1 = 1
B2 = 2
B3 = 9

2

,
µ21 = 0
µ31 = 0
µ32 = 1

2

, k = 3

In the next iteration of (1), µ32 is within the sensitivity threshold, so the or-
thogonalization process is not called. Additionally, the Bk < (3

4
−µ2

k,k−1)Bk−1
test fails, indicating that b2 and b3 have sufficiently different lengths. The
projection of b3 onto b1 (µ31) is tested, and found to be within the bounds of
sensitivity for the system. The algorithm terminates, with A as the reduced
basis for the lattice generated by the initial collection of vectors. Note that
the new basis has smaller dot products, and that is what is accomplished by
LLL. This causes an LLL-reduced lattice basis to tend to have short vectors.

5 Cryptanalysis of Knapsack Cryptosystems

Using Shortest Vectors

The structure of knapsack problems, such as those described in this paper,
lends itself to attack through lattice reduction. The challenge is to determine
which subset of numbers from a known (public) set was used to form the sum,
which is sent as the encrypted message. On a basic level, we can generate
an ordered set of column vectors that consist of each element in the set and
append a column vector consisting of the encrypted message to form a lattice.
Lattice basis reduction, performed on a lattice with the correct modifications
for the particulars of a given knapsack cryptosystem, will often return the
correct solution for the unencrypted message.

Shortest vector attacks rely on the problem having a low density d, defined
for a knapsack composed of the vector a = 〈a1, . . . , an〉 by

d(a) =
n

log2(maxi ai)
. (13)

In knapsack cryptosystems, d(a) can be used to approximate the information
rate at which bits are transmitted; specifically

d(a) ∼=
number of bits in plaintext message

average number of bits in ciphertext message
. (14)
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Relating the density measure to the cryptosystems explored in this paper, the
Merkle–Hellman knapsack cryptosystem has a relatively low density, while
the density of knapsacks generated by the Chor–Rivest system are signif-
icantly higher. We will see the implications of that property later in this
section.

5.1 Merkle-Hellman Knapsack Cryptanalysis

We generate a super-increasing private knapsack a′ = 〈a′1, a′2, . . . , a′k〉, and
choose two coprime numbers m and w, where m >

∑
a′i. The public knap-

sack, a = 〈w · a′1 mod m,w · a′2 mod m, . . . , w · a′n mod m〉 = 〈a1, a2, . . . , an〉,
and a ciphertext S =

∑
xiai are published.

To find x, we generate a lattice from the elements of a, and the message
S:

A =



1 0 · · · · · · 0 0
0 1 · · · · · · 0 0
0 0 · · · · · · 0 0
...

...
. . . . . .

...
...

0 0 · · · · · · 0 0
0 0 · · · · · · 1 0
a1 a2 · · · · · · an S


In general, if v̄ is a short vector in the lattice, then

v̄ = c1ā1 + c2ā2 + . . .+ cnān + cn+1S̄ =


c1
c2
...
cn

c1a1 + . . .+ cn+1S

 , (15)

and every component ci should be small.
By the construction of S, we know that the lattice Λ(A) contains a vector

comprised of some elements of a, and the message S. Therefore, the vector

w̄ =
n∑
i=1

xiāi − S̄ (16)

is in the lattice, and w̄ is short, in particular, (w̄, w̄) = |I| ≤ k . Using LLL
to find short vectors in Λ(A) will, in many cases, return the short vector w̄.
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5.2 Using LLL in the Cryptanalysis of the Chor-Rivest
Knapsack Cryptosystem

Due to the relatively higher density of the Chor–Rivest cryptosystem, the
shortest vector attack used against the Merkle–Hellman cryptosystem will
often fail to find the shortest vector when this cryptosystem is used. Instead,
modifications to the lattice basis reduction algorithm have been proposed
with the goal of using the public key and message to find other vectors in
the lattice, and in turn finding a lattice basis using those vectors.

Several modifications have been proposed, and here we present one of the
earliest adjustments to LLL, published by J. C. Lagarias and A. M. Odlyzko
[4].
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(1) Take the following vectors as a basis [b1, . . . ,bn+1] for an n + 1-
dimensional integer lattice Λ = Λ(A). Here, each column of A is a
vector bi:

A =



1 0 · · · · · · 0 0
0 1 · · · · · · 0 0
0 0 · · · · · · 0 0
...

...
. . . . . .

...
...

0 0 · · · · · · 0 0
0 0 · · · · · · 1 0
−a1 −a2 · · · · · · −an S


.

(2) Find a reduced basis [b∗1, . . . ,b
∗
n+1] of Λ using the LLL algorithm.

(3) Check if any b∗i = 〈b∗i,1, . . . , b∗i,n+1〉 has all bij = 0 or some fixed λ, for
1 ≤ j ≤ n. For any such b∗i , check whether xj = λ−1b∗ij for 1 ≤ j ≤ n
gives a solution to the problem

S =
n∑
i=1

xiai,

and if so, halt. Otherwise, continue.

(4) Repeat steps (1)–(3) with S replaced by S ′ =
∑n

i=1 ai − S. Then halt.

If the algorithm produces a valid solution, it is said to succeed; otherwise, it
fails.

Figure 2: Algorithm SV (Shortest Vector)

It is observed that Algorithm SV is not radically different from the LLL
algorithm. The general method is the same in both algorithms, with the
variation that if a valid solution is not found after the initial LLL run, the
ciphertext vector is replaced with a vector of different length before LLL
is re-run. This improves the likelihood that LLL will find a short vector,
and “almost always” yields the correct solution for knapsacks with a density
d < 0.645.

This attack was tested against the Chor–Rivest cryptosystem and its
results were published with the cryptosystem. Using carefully chosen pa-
rameters p and h, the attack is averted due to the increased density of the
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knapsack. For example, using p = 103 and h = 12, the density is 1.271, and
those parameters are of a smaller magnitude than the recommendations of
Chor and Rivest.

Further shortest vector attacks have been made against the Chor-Rivest
cryptosystem with modifications to account for its high density. An attack
by Coster et al. [3], builds upon the Algorithm SV published by Lagarias and
Odlyzko. They present two modifications of the algorithm, either of which
will solve “almost all” problems of density < 0.9408. Several years later,
Schnorr and Hörner [7] presented work which solves, with positive probabil-
ity, the shortest vector problem for knapsacks with arbitrary densities. In
testing, they found it capable of breaking the Chor–Rivest cryptosystem for
certain parameters which were previously unbreakable by lattice reduction,
but carefully selected parameters again decreased the effectiveness of their
attack.

6 Conclusion

This paper presented the well-known “subset sum” problem and explored
its use in cryptography. Although the standard problem is NP-complete,
knapsack cryptosystems include trapdoors in the generation phase of the
knapsack in order to facilitate a non-brute-force, quick decryption for the
authorized user, while utilizing tools from number theory to conceal that
trapdoor from unauthorized parties.

The Merkle–Hellman knapsack cryptosystem uses a super-increasing set
as its trapdoor, and implements modular reduction to hide that property.
The Chor–Rivest system utilizes finite field arithmetic and hamming weight
to increase the complexity of that system’s key and trapdoor generation.
These systems, like all other knapsack-based cryptosystems, share a common
property: encryption is easy; which is to say that the ciphertexts generated by
these systems represent sums of unique subsets of elements in the knapsack.

Because of this property, one method of attack against this kind of cryp-
tosystem is to brute-force the ciphertext by looking at all possible subsets of
the knapsack. That method is extremely inefficient, with 2n possible com-
binations to examine in the worst case, and it quickly becomes impractical
computationally as the size of the knapsack increases. The idea of utilizing
the elements of the knapsack to find the ciphertext is instead built upon
through lattice representation.

19



Representing the elements of the knapsack as linearly independent vectors
in a lattice allows us to represent the ciphertext as a combination of those
vectors. Using this method, if one finds a basis of the lattice, then there will
often be a short vector composed of the elements of the knapsack used to
create the ciphertext. Although it is difficult to always find a basis which
includes that short vector, lattice basis reduction algorithms like the LLL
algorithm can “almost always” find that short vector of many lattices in a
computationally-feasible amount of time.

To counteract attacks such as lattice basis reduction, later knapsack-
based cryptosystems utilize different tools in the generation phase to increase
the “random” property of its elements. As the cryptosystems become more
complex, reduction-based attacks have become more sophisticated, as seen
by the Chor–Rivest attacks discussed in Section 5.2. This demonstrates the
versatility of lattice basis reduction in the cryptanalysis of knapsack-based
cryptosystems, and lends credence to the opinion of many that all knapsack-
based cryptosystems are insecure, even if the particulars for a specific system
have not yet been found.
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